S. Yang, A. Khodabandeh, S. Zaminpardaz, P. J. G. Teunissen
{"title":"Ambiguity-resolved short-baseline positioning performance of LEO frequency-varying carrier phase signals: a feasibility study","authors":"S. Yang, A. Khodabandeh, S. Zaminpardaz, P. J. G. Teunissen","doi":"10.1007/s00190-025-01942-w","DOIUrl":null,"url":null,"abstract":"<p>While integer ambiguity resolution (IAR) enables GNSS to achieve real-time sub-centimeter-level positioning in open-sky environments, it can be easily hindered if the involved receivers are situated in areas with limited satellite visibility, such as in dense city environments. In such GNSS-challenged cases, commercial Low Earth Orbit (LEO) communication satellites can potentially augment GNSS by providing additional measurements. However, LEO satellites often lack code measurements, mainly transmitting satellite-specific frequency-varying carrier phase signals. This contribution aims to study the ambiguity-resolved baseline positioning performance of such phase-only signals, addressing the extent to which LEO constellations can realize near real-time positioning in standalone and GNSS-combined modes. Through a simulation platform, we analyze the distinct response of each LEO constellation (Iridium, Globalstar, Starlink, OneWeb, and Orbcomm) to IAR under various circumstances. Although achieving <i>single-receiver</i> high-precision positioning can be challenged by inaccuracies in the LEO satellite orbit products, the relative distance between two receivers can help overcome this limitation. As a result, centimeter-level relative positioning over short baselines can be made possible, even with a satellite elevation cut-off angle of 50 degrees, making it suitable for GNSS-challenged environments. This can be achieved with high-grade receiver clocks over very short baselines (<span>\\(\\sim \\)</span>5 km) and access to decimeter-level orbit products.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"24 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01942-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
虽然整数模糊分辨率(IAR)使全球导航卫星系统能够在开阔天空环境中实现亚厘米级的实时定位,但如果相关接收器位于卫星能见度有限的区域(如密集的城市环境),则很容易受到阻碍。在这种全球导航卫星系统受到挑战的情况下,商业低地轨道(LEO)通信卫星有可能通过提供额外的测量数据来增强全球导航卫星系统。然而,低地轨道卫星通常缺乏代码测量,主要是传输卫星特定频率变化的载波相位信号。本文旨在研究此类纯相位信号的模糊分辨基线定位性能,探讨低地轨道星座在独立模式和全球导航卫星系统组合模式下实现近实时定位的程度。通过模拟平台,我们分析了每个低地轨道星座(铱星、全球星、星链、OneWeb 和 Orbcomm)在各种情况下对 IAR 的不同响应。虽然低地轨道卫星轨道产品的不准确性会对实现单接收器高精度定位造成挑战,但两个接收器之间的相对距离有助于克服这一限制。因此,即使卫星仰角为 50 度,也能在短基线上实现厘米级相对定位,从而使其适用于全球导航卫星系统受到挑战的环境。在极短基线(\(\sim \)5公里)上使用高等级接收器时钟并获得分米级轨道产品,就可以实现这一目标。
Ambiguity-resolved short-baseline positioning performance of LEO frequency-varying carrier phase signals: a feasibility study
While integer ambiguity resolution (IAR) enables GNSS to achieve real-time sub-centimeter-level positioning in open-sky environments, it can be easily hindered if the involved receivers are situated in areas with limited satellite visibility, such as in dense city environments. In such GNSS-challenged cases, commercial Low Earth Orbit (LEO) communication satellites can potentially augment GNSS by providing additional measurements. However, LEO satellites often lack code measurements, mainly transmitting satellite-specific frequency-varying carrier phase signals. This contribution aims to study the ambiguity-resolved baseline positioning performance of such phase-only signals, addressing the extent to which LEO constellations can realize near real-time positioning in standalone and GNSS-combined modes. Through a simulation platform, we analyze the distinct response of each LEO constellation (Iridium, Globalstar, Starlink, OneWeb, and Orbcomm) to IAR under various circumstances. Although achieving single-receiver high-precision positioning can be challenged by inaccuracies in the LEO satellite orbit products, the relative distance between two receivers can help overcome this limitation. As a result, centimeter-level relative positioning over short baselines can be made possible, even with a satellite elevation cut-off angle of 50 degrees, making it suitable for GNSS-challenged environments. This can be achieved with high-grade receiver clocks over very short baselines (\(\sim \)5 km) and access to decimeter-level orbit products.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics