经合组织卫生系统的效率比较分析:FDH 与效率分析树(EAT 和 RFEAT)的机器学习方法。

IF 1.7 4区 医学 Q3 HEALTH POLICY & SERVICES Cost Effectiveness and Resource Allocation Pub Date : 2025-02-22 DOI:10.1186/s12962-025-00607-x
Yejin Joo
{"title":"经合组织卫生系统的效率比较分析:FDH 与效率分析树(EAT 和 RFEAT)的机器学习方法。","authors":"Yejin Joo","doi":"10.1186/s12962-025-00607-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As health expenditure continues to rise due to income growth, technological advancements, and an aging population, it has become increasingly important to accurately measure and improve the efficiency of health systems. This is because financial resources are limited, and the allocation of resources can significantly influence the quality of health systems and health outcomes.</p><p><strong>Methods: </strong>This study applies machine learning techniques-Efficiency Analysis Trees (EAT) and Random Forest for Efficiency Analysis Trees (RFEAT)-to evaluate the efficiency of health systems in 36 OECD countries, comparing the results with those from the traditional free disposal hull (FDH) method.</p><p><strong>Results: </strong>Analysis shows high discrimination power in the order of RFEAT, EAT, and FDH. The correlation in efficiency rankings shows more than 80% similarity between RFEAT and EAT, while both show less than 80% similarity with FDH. According to RFEAT estimates, the countries with the highest efficiency are South Korea, Switzerland, and Costa Rica, whereas the United States, Lithuania, and Latvia are identified as the least efficient. The group-level analysis reveals that Asian countries, on average, perform more efficiently followed by Oceania, Europe, and the Americas. The groups with higher out-of-pocket healthcare expenditures per capita tend to show slightly better efficiency and the group with the smallest elderly population proportion exhibits the highest average health system efficiency.</p><p><strong>Conclusion: </strong>Traditional methods like FDH are prone to inefficiency underestimation, especially in small samples with multiple variables. This study demonstrates the potential of machine learning approaches like EAT and RFEAT to provide more reliable efficiency estimates. These methods can help policymakers make better resource allocation decisions by mitigating inefficiency underestimation and offering greater discrimination power.</p>","PeriodicalId":47054,"journal":{"name":"Cost Effectiveness and Resource Allocation","volume":"23 1","pages":"4"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Efficiency Analysis of OECD Health Systems: FDH vs. Machine Learning Approaches with Efficiency Analysis Trees (EAT and RFEAT).\",\"authors\":\"Yejin Joo\",\"doi\":\"10.1186/s12962-025-00607-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As health expenditure continues to rise due to income growth, technological advancements, and an aging population, it has become increasingly important to accurately measure and improve the efficiency of health systems. This is because financial resources are limited, and the allocation of resources can significantly influence the quality of health systems and health outcomes.</p><p><strong>Methods: </strong>This study applies machine learning techniques-Efficiency Analysis Trees (EAT) and Random Forest for Efficiency Analysis Trees (RFEAT)-to evaluate the efficiency of health systems in 36 OECD countries, comparing the results with those from the traditional free disposal hull (FDH) method.</p><p><strong>Results: </strong>Analysis shows high discrimination power in the order of RFEAT, EAT, and FDH. The correlation in efficiency rankings shows more than 80% similarity between RFEAT and EAT, while both show less than 80% similarity with FDH. According to RFEAT estimates, the countries with the highest efficiency are South Korea, Switzerland, and Costa Rica, whereas the United States, Lithuania, and Latvia are identified as the least efficient. The group-level analysis reveals that Asian countries, on average, perform more efficiently followed by Oceania, Europe, and the Americas. The groups with higher out-of-pocket healthcare expenditures per capita tend to show slightly better efficiency and the group with the smallest elderly population proportion exhibits the highest average health system efficiency.</p><p><strong>Conclusion: </strong>Traditional methods like FDH are prone to inefficiency underestimation, especially in small samples with multiple variables. This study demonstrates the potential of machine learning approaches like EAT and RFEAT to provide more reliable efficiency estimates. These methods can help policymakers make better resource allocation decisions by mitigating inefficiency underestimation and offering greater discrimination power.</p>\",\"PeriodicalId\":47054,\"journal\":{\"name\":\"Cost Effectiveness and Resource Allocation\",\"volume\":\"23 1\",\"pages\":\"4\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cost Effectiveness and Resource Allocation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12962-025-00607-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cost Effectiveness and Resource Allocation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12962-025-00607-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Efficiency Analysis of OECD Health Systems: FDH vs. Machine Learning Approaches with Efficiency Analysis Trees (EAT and RFEAT).

Background: As health expenditure continues to rise due to income growth, technological advancements, and an aging population, it has become increasingly important to accurately measure and improve the efficiency of health systems. This is because financial resources are limited, and the allocation of resources can significantly influence the quality of health systems and health outcomes.

Methods: This study applies machine learning techniques-Efficiency Analysis Trees (EAT) and Random Forest for Efficiency Analysis Trees (RFEAT)-to evaluate the efficiency of health systems in 36 OECD countries, comparing the results with those from the traditional free disposal hull (FDH) method.

Results: Analysis shows high discrimination power in the order of RFEAT, EAT, and FDH. The correlation in efficiency rankings shows more than 80% similarity between RFEAT and EAT, while both show less than 80% similarity with FDH. According to RFEAT estimates, the countries with the highest efficiency are South Korea, Switzerland, and Costa Rica, whereas the United States, Lithuania, and Latvia are identified as the least efficient. The group-level analysis reveals that Asian countries, on average, perform more efficiently followed by Oceania, Europe, and the Americas. The groups with higher out-of-pocket healthcare expenditures per capita tend to show slightly better efficiency and the group with the smallest elderly population proportion exhibits the highest average health system efficiency.

Conclusion: Traditional methods like FDH are prone to inefficiency underestimation, especially in small samples with multiple variables. This study demonstrates the potential of machine learning approaches like EAT and RFEAT to provide more reliable efficiency estimates. These methods can help policymakers make better resource allocation decisions by mitigating inefficiency underestimation and offering greater discrimination power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Cost Effectiveness and Resource Allocation
Cost Effectiveness and Resource Allocation HEALTH POLICY & SERVICES-
CiteScore
3.40
自引率
4.30%
发文量
59
审稿时长
34 weeks
期刊介绍: Cost Effectiveness and Resource Allocation is an Open Access, peer-reviewed, online journal that considers manuscripts on all aspects of cost-effectiveness analysis, including conceptual or methodological work, economic evaluations, and policy analysis related to resource allocation at a national or international level. Cost Effectiveness and Resource Allocation is aimed at health economists, health services researchers, and policy-makers with an interest in enhancing the flow and transfer of knowledge relating to efficiency in the health sector. Manuscripts are encouraged from researchers based in low- and middle-income countries, with a view to increasing the international economic evidence base for health.
期刊最新文献
A cost-utility analysis of long-acting insulin analogues (detemir, glargine and degludec) for the treatment of adult type 1 diabetes in South Africa. Cost-effectiveness of sacituzumab govitecan for hormone receptor-positive human epidermal growth factor receptor 2-negative metastatic breast cancer based on the EVER-132-002 trial in China. Factors influencing the demand for individual voluntary private health insurance in Iran. Third-line multiple myeloma treatment of inpatients in a German cancer center: analysis of potential cost savings due to decreased renal insufficiency. Cost-effectiveness of nirmatrelvir/ritonavir in COVID-19 patient groups at high risk for progression to severe COVID-19 in the Netherlands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1