Johanna C Arroyave-Ospina, Magnolia Martínez, Manon Buist-Homan, Victoria Palasantzas, Marco Arrese, Han Moshage
{"title":"咖啡化合物对脂肪毒性的保护作用与原代大鼠肝细胞中脂滴的形成和抗氧化反应有关","authors":"Johanna C Arroyave-Ospina, Magnolia Martínez, Manon Buist-Homan, Victoria Palasantzas, Marco Arrese, Han Moshage","doi":"10.3390/antiox14020175","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes.</p><p><strong>Methods: </strong>Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated.</p><p><strong>Results: </strong>CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production.</p><p><strong>Conclusions: </strong>CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes.\",\"authors\":\"Johanna C Arroyave-Ospina, Magnolia Martínez, Manon Buist-Homan, Victoria Palasantzas, Marco Arrese, Han Moshage\",\"doi\":\"10.3390/antiox14020175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes.</p><p><strong>Methods: </strong>Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated.</p><p><strong>Results: </strong>CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production.</p><p><strong>Conclusions: </strong>CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14020175\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020175","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes.
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes.
Methods: Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated.
Results: CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production.
Conclusions: CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.