补充益生菌 BPL1™-HT(热激活动物双歧杆菌亚种 Lactis)可减轻血管紧张素 II 输注对小鼠心血管的影响。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2025-02-08 DOI:10.3390/antiox14020193
Mario de la Fuente-Muñoz, Marta Román-Carmena, Sara Amor, Daniel González-Hedström, Verónica Martinez-Rios, Patricia Martorell, Antonio M Inarejos-García, Reme García Bou, Sonia Guilera-Bermell, Ángel L García-Villalón, Miriam Granado
{"title":"补充益生菌 BPL1™-HT(热激活动物双歧杆菌亚种 Lactis)可减轻血管紧张素 II 输注对小鼠心血管的影响。","authors":"Mario de la Fuente-Muñoz, Marta Román-Carmena, Sara Amor, Daniel González-Hedström, Verónica Martinez-Rios, Patricia Martorell, Antonio M Inarejos-García, Reme García Bou, Sonia Guilera-Bermell, Ángel L García-Villalón, Miriam Granado","doi":"10.3390/antiox14020193","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension is associated with alterations in the composition and diversity of the intestinal microbiota. Indeed, supplementation with probiotics and prebiotics has shown promising results in modulating the gut microbiota and improving cardiovascular health. However, there are no studies regarding the possible beneficial effects of postbiotics on cardiovascular function and particularly on hypertension-induced cardiovascular alterations. Thus, the aim of this study was to analyze the effect of supplementation with the heat-treated <i>Bifidobacterium animalis</i> subsp. lactis CECT 8145 strain (BPL1™ HT), a postbiotic developed by the company ADM-Biopolis, on cardiovascular alterations induced by angiotensin II (AngII) infusion in mice. For this purpose, three groups of C57BL/6J male mice were used: (i) mice infused with saline (control); (ii) mice infused with AngII for 4 weeks (AngII); and (iii) mice supplemented with BPL1™ HT in the drinking water (1010 cells/animal/day) for 8 weeks and infused with AngII for the last 4 weeks (AngII + BPL1™ HT). AngII infusion was associated with heart hypertrophy, hypertension, endothelial dysfunction, and overexpression of proinflammatory cytokines in aortic tissue. BPL1™ HT supplementation reduced systolic blood pressure and attenuated AngII-induced endothelial dysfunction in aortic segments. Moreover, mice supplemented with BPL1™ HT showed a decreased gene expression of the proinflammatory cytokine interleukin 6 (<i>Il-6</i>) and the prooxidant enzymes NADPH oxidases 1 (<i>Nox-1</i>) and 4 (<i>Nox-4</i>), as well as an overexpression of AngII receptor 2 (<i>At2r</i>) and interleukin 10 (<i>Il-10</i>) in arterial tissue. In the heart, BPL1™ HT supplementation increased myocardial contractility and prevented ischemia-reperfusion-induced cardiomyocyte apoptosis. In conclusion, supplementation with the postbiotic BPL1™ HT prevents endothelial dysfunction, lowers blood pressure, and has cardioprotective effects in an experimental model of hypertension induced by AngII infusion in mice.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Supplementation with the Postbiotic BPL1™-HT (Heat-Inactivated <i>Bifidobacterium animalis</i> subsp. Lactis) Attenuates the Cardiovascular Alterations Induced by Angiotensin II Infusion in Mice.\",\"authors\":\"Mario de la Fuente-Muñoz, Marta Román-Carmena, Sara Amor, Daniel González-Hedström, Verónica Martinez-Rios, Patricia Martorell, Antonio M Inarejos-García, Reme García Bou, Sonia Guilera-Bermell, Ángel L García-Villalón, Miriam Granado\",\"doi\":\"10.3390/antiox14020193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypertension is associated with alterations in the composition and diversity of the intestinal microbiota. Indeed, supplementation with probiotics and prebiotics has shown promising results in modulating the gut microbiota and improving cardiovascular health. However, there are no studies regarding the possible beneficial effects of postbiotics on cardiovascular function and particularly on hypertension-induced cardiovascular alterations. Thus, the aim of this study was to analyze the effect of supplementation with the heat-treated <i>Bifidobacterium animalis</i> subsp. lactis CECT 8145 strain (BPL1™ HT), a postbiotic developed by the company ADM-Biopolis, on cardiovascular alterations induced by angiotensin II (AngII) infusion in mice. For this purpose, three groups of C57BL/6J male mice were used: (i) mice infused with saline (control); (ii) mice infused with AngII for 4 weeks (AngII); and (iii) mice supplemented with BPL1™ HT in the drinking water (1010 cells/animal/day) for 8 weeks and infused with AngII for the last 4 weeks (AngII + BPL1™ HT). AngII infusion was associated with heart hypertrophy, hypertension, endothelial dysfunction, and overexpression of proinflammatory cytokines in aortic tissue. BPL1™ HT supplementation reduced systolic blood pressure and attenuated AngII-induced endothelial dysfunction in aortic segments. Moreover, mice supplemented with BPL1™ HT showed a decreased gene expression of the proinflammatory cytokine interleukin 6 (<i>Il-6</i>) and the prooxidant enzymes NADPH oxidases 1 (<i>Nox-1</i>) and 4 (<i>Nox-4</i>), as well as an overexpression of AngII receptor 2 (<i>At2r</i>) and interleukin 10 (<i>Il-10</i>) in arterial tissue. In the heart, BPL1™ HT supplementation increased myocardial contractility and prevented ischemia-reperfusion-induced cardiomyocyte apoptosis. In conclusion, supplementation with the postbiotic BPL1™ HT prevents endothelial dysfunction, lowers blood pressure, and has cardioprotective effects in an experimental model of hypertension induced by AngII infusion in mice.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14020193\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supplementation with the Postbiotic BPL1™-HT (Heat-Inactivated Bifidobacterium animalis subsp. Lactis) Attenuates the Cardiovascular Alterations Induced by Angiotensin II Infusion in Mice.

Hypertension is associated with alterations in the composition and diversity of the intestinal microbiota. Indeed, supplementation with probiotics and prebiotics has shown promising results in modulating the gut microbiota and improving cardiovascular health. However, there are no studies regarding the possible beneficial effects of postbiotics on cardiovascular function and particularly on hypertension-induced cardiovascular alterations. Thus, the aim of this study was to analyze the effect of supplementation with the heat-treated Bifidobacterium animalis subsp. lactis CECT 8145 strain (BPL1™ HT), a postbiotic developed by the company ADM-Biopolis, on cardiovascular alterations induced by angiotensin II (AngII) infusion in mice. For this purpose, three groups of C57BL/6J male mice were used: (i) mice infused with saline (control); (ii) mice infused with AngII for 4 weeks (AngII); and (iii) mice supplemented with BPL1™ HT in the drinking water (1010 cells/animal/day) for 8 weeks and infused with AngII for the last 4 weeks (AngII + BPL1™ HT). AngII infusion was associated with heart hypertrophy, hypertension, endothelial dysfunction, and overexpression of proinflammatory cytokines in aortic tissue. BPL1™ HT supplementation reduced systolic blood pressure and attenuated AngII-induced endothelial dysfunction in aortic segments. Moreover, mice supplemented with BPL1™ HT showed a decreased gene expression of the proinflammatory cytokine interleukin 6 (Il-6) and the prooxidant enzymes NADPH oxidases 1 (Nox-1) and 4 (Nox-4), as well as an overexpression of AngII receptor 2 (At2r) and interleukin 10 (Il-10) in arterial tissue. In the heart, BPL1™ HT supplementation increased myocardial contractility and prevented ischemia-reperfusion-induced cardiomyocyte apoptosis. In conclusion, supplementation with the postbiotic BPL1™ HT prevents endothelial dysfunction, lowers blood pressure, and has cardioprotective effects in an experimental model of hypertension induced by AngII infusion in mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Unlocking Fertility: How Nitric Oxide Pathways Connect Obesity and Reproductive Health-The Role of Bariatric Surgery. Antioxidant and Photoprotective Activities of 3,4-Dihydroxybenzoic Acid and (+)-Catechin, Identified from Schima argentea Extract, in UVB-Irradiated HaCaT Cells. Is High-Dose Ubiquinone Therapy Before Cardiac Surgery Enough to Reduce the Incidence of Cardiac Surgery-Associated Acute Kidney Injury? A Randomized Controlled Trial. Pharmacological Mechanism and Drug Research Prospects of Ginsenoside Rb1 as an Antidepressant. Genome-Wide Identification and Drought-Responsive Functional Analysis of the GST Gene Family in Potato (Solanum tuberosum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1