Niroja Vadagam , Karthik Sara , S. Naveen , Chandrasekar Kuppan , Narasimha Swamy Lakka
{"title":"用于估算孟鲁司特钠咀嚼片中羟丙基纤维素、阿斯巴甜和樱桃香精的环保型绿色 HPLC-ELSD 和 HPLC-UV 方法:逆向工程方法","authors":"Niroja Vadagam , Karthik Sara , S. Naveen , Chandrasekar Kuppan , Narasimha Swamy Lakka","doi":"10.1016/j.microc.2025.113183","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a reverse engineering approach is utilized to evaluate and estimate critical excipients in Reference Listed Drug Products (RLDs), aiding in the formulation of cost-effective generics drug products. The key excipients, Hydroxypropyl cellulose (HPC), aspartame, and cherry flavor, used in the manufacturing of Montelukast sodium chewable tablets (for asthma and allergic rhinitis treatment), were quantitatively estimated using newly developed HPLC-UV and HPLC-ELSD methods. HPLC-ELSD separation for HPC was achieved in 35-minutes using a binary gradient consisting of water-formic acid-acetonitrile with a C<sub>18</sub> column (150x4.6-mm,4.6-µm), flow rate of 0.4-mL/min, injection volume of 50-µL, column temperature of 35 °C, and evaporator temperature of 85 °C. Aspartame and cherry flavor were estimated using HPLC-UV method consisting of 30-minutes gradient with phosphate buffer-acetonitrile along with a C<sub>18</sub> column, flow rate of 0.8-mL/min, injection volume of 50-µL, column temperature of 35 °C, auto-sampler of 10 °C, and UV detection at 220-nm for aspartame and 248-nm for cherry flavor. Method validation studies performed as in-line with the USP<1225> and ICH, Q2(R2) guidelines, demonstrating excellent specificity (no peak overlap and interference), precision, recovery (90.0–110.0 %), and linearity (HPC: 93.839–387.989 µg/mL with R<sup>2</sup> > 0.9980; Aspartame: 5.05–119.23 µg/mL with R<sup>2</sup> > 0.9998; Cherry flavor; 5.04–121.03 µg/mL with R<sup>2</sup> > 0.9999). The validated HPLC-ELSD and HPLC-UV methods were supported real-time quantitative analysis of excipients in Montelukast sodium tablets, aiding in the reverse engineering process for the generic drug products development. These methods and approach can also be utilized for the RLDs where HPC, aspartame and cherry flavor are critical role in generics product development (ANDAs).</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"212 ","pages":"Article 113183"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly green HPLC-ELSD and HPLC-UV methods for estimation of hydroxypropyl cellulose, aspartame, and cherry flavor in Montelukast sodium chewable tablets: A reverse engineering approach\",\"authors\":\"Niroja Vadagam , Karthik Sara , S. Naveen , Chandrasekar Kuppan , Narasimha Swamy Lakka\",\"doi\":\"10.1016/j.microc.2025.113183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a reverse engineering approach is utilized to evaluate and estimate critical excipients in Reference Listed Drug Products (RLDs), aiding in the formulation of cost-effective generics drug products. The key excipients, Hydroxypropyl cellulose (HPC), aspartame, and cherry flavor, used in the manufacturing of Montelukast sodium chewable tablets (for asthma and allergic rhinitis treatment), were quantitatively estimated using newly developed HPLC-UV and HPLC-ELSD methods. HPLC-ELSD separation for HPC was achieved in 35-minutes using a binary gradient consisting of water-formic acid-acetonitrile with a C<sub>18</sub> column (150x4.6-mm,4.6-µm), flow rate of 0.4-mL/min, injection volume of 50-µL, column temperature of 35 °C, and evaporator temperature of 85 °C. Aspartame and cherry flavor were estimated using HPLC-UV method consisting of 30-minutes gradient with phosphate buffer-acetonitrile along with a C<sub>18</sub> column, flow rate of 0.8-mL/min, injection volume of 50-µL, column temperature of 35 °C, auto-sampler of 10 °C, and UV detection at 220-nm for aspartame and 248-nm for cherry flavor. Method validation studies performed as in-line with the USP<1225> and ICH, Q2(R2) guidelines, demonstrating excellent specificity (no peak overlap and interference), precision, recovery (90.0–110.0 %), and linearity (HPC: 93.839–387.989 µg/mL with R<sup>2</sup> > 0.9980; Aspartame: 5.05–119.23 µg/mL with R<sup>2</sup> > 0.9998; Cherry flavor; 5.04–121.03 µg/mL with R<sup>2</sup> > 0.9999). The validated HPLC-ELSD and HPLC-UV methods were supported real-time quantitative analysis of excipients in Montelukast sodium tablets, aiding in the reverse engineering process for the generic drug products development. These methods and approach can also be utilized for the RLDs where HPC, aspartame and cherry flavor are critical role in generics product development (ANDAs).</div></div>\",\"PeriodicalId\":391,\"journal\":{\"name\":\"Microchemical Journal\",\"volume\":\"212 \",\"pages\":\"Article 113183\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchemical Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026265X25005375\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X25005375","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Eco-friendly green HPLC-ELSD and HPLC-UV methods for estimation of hydroxypropyl cellulose, aspartame, and cherry flavor in Montelukast sodium chewable tablets: A reverse engineering approach
In this study, a reverse engineering approach is utilized to evaluate and estimate critical excipients in Reference Listed Drug Products (RLDs), aiding in the formulation of cost-effective generics drug products. The key excipients, Hydroxypropyl cellulose (HPC), aspartame, and cherry flavor, used in the manufacturing of Montelukast sodium chewable tablets (for asthma and allergic rhinitis treatment), were quantitatively estimated using newly developed HPLC-UV and HPLC-ELSD methods. HPLC-ELSD separation for HPC was achieved in 35-minutes using a binary gradient consisting of water-formic acid-acetonitrile with a C18 column (150x4.6-mm,4.6-µm), flow rate of 0.4-mL/min, injection volume of 50-µL, column temperature of 35 °C, and evaporator temperature of 85 °C. Aspartame and cherry flavor were estimated using HPLC-UV method consisting of 30-minutes gradient with phosphate buffer-acetonitrile along with a C18 column, flow rate of 0.8-mL/min, injection volume of 50-µL, column temperature of 35 °C, auto-sampler of 10 °C, and UV detection at 220-nm for aspartame and 248-nm for cherry flavor. Method validation studies performed as in-line with the USP<1225> and ICH, Q2(R2) guidelines, demonstrating excellent specificity (no peak overlap and interference), precision, recovery (90.0–110.0 %), and linearity (HPC: 93.839–387.989 µg/mL with R2 > 0.9980; Aspartame: 5.05–119.23 µg/mL with R2 > 0.9998; Cherry flavor; 5.04–121.03 µg/mL with R2 > 0.9999). The validated HPLC-ELSD and HPLC-UV methods were supported real-time quantitative analysis of excipients in Montelukast sodium tablets, aiding in the reverse engineering process for the generic drug products development. These methods and approach can also be utilized for the RLDs where HPC, aspartame and cherry flavor are critical role in generics product development (ANDAs).
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.