基于相位肖像方法的地形和用户自适应步态相位估计的人在环优化

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-12-13 DOI:10.1109/TMRB.2024.3517136
Tian Ye;Ali Reza Manzoori;Auke Ijspeert;Mohamed Bouri
{"title":"基于相位肖像方法的地形和用户自适应步态相位估计的人在环优化","authors":"Tian Ye;Ali Reza Manzoori;Auke Ijspeert;Mohamed Bouri","doi":"10.1109/TMRB.2024.3517136","DOIUrl":null,"url":null,"abstract":"Gait phase (GP) estimation is a critical component in control of exoskeletons and prostheses, enabling seamless user interaction in various controllers. In recent years, methods based on machine learning and sensor fusion have offered advances in GP estimation, but their high computational costs and reliance on training and numerous sensors present practical challenges. Estimation methods using phase variables, such as phase-portrait-based methods, can circumvent these drawbacks. However, their lower accuracy has limited their application. To address this limitation, we introduce a novel human-in-the-loop (HIL) optimization approach for improving the accuracy of GP estimation in phase-portrait-based methods. The approach is based on geometric manipulation of the phase portraits with linear transformations, which are adapted online by employing Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The performance of this adaptive method (termed AM) is compared against using a fixed transformation (FM) at different walking speeds on level and inclined treadmill. The results demonstrate the superior performance of AM in all tested conditions in terms of accuracy and linearity, with an average RMS error of <inline-formula> <tex-math>$1.97 \\pm 0.20\\%$ </tex-math></inline-formula>. Convergence times for one round of optimization on a low-end single-board computer were less than 11 s on average. This study confirms the potential of leveraging HIL optimization for enhancing the performance of phase-portrait-based methods to reach accuracy levels comparable to more complex state-of-the-art methods.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"94-99"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-in-the-Loop Optimization for Terrain- and User-Adaptive Gait Phase Estimation in Phase-Portrait-Based Methods\",\"authors\":\"Tian Ye;Ali Reza Manzoori;Auke Ijspeert;Mohamed Bouri\",\"doi\":\"10.1109/TMRB.2024.3517136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait phase (GP) estimation is a critical component in control of exoskeletons and prostheses, enabling seamless user interaction in various controllers. In recent years, methods based on machine learning and sensor fusion have offered advances in GP estimation, but their high computational costs and reliance on training and numerous sensors present practical challenges. Estimation methods using phase variables, such as phase-portrait-based methods, can circumvent these drawbacks. However, their lower accuracy has limited their application. To address this limitation, we introduce a novel human-in-the-loop (HIL) optimization approach for improving the accuracy of GP estimation in phase-portrait-based methods. The approach is based on geometric manipulation of the phase portraits with linear transformations, which are adapted online by employing Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The performance of this adaptive method (termed AM) is compared against using a fixed transformation (FM) at different walking speeds on level and inclined treadmill. The results demonstrate the superior performance of AM in all tested conditions in terms of accuracy and linearity, with an average RMS error of <inline-formula> <tex-math>$1.97 \\\\pm 0.20\\\\%$ </tex-math></inline-formula>. Convergence times for one round of optimization on a low-end single-board computer were less than 11 s on average. This study confirms the potential of leveraging HIL optimization for enhancing the performance of phase-portrait-based methods to reach accuracy levels comparable to more complex state-of-the-art methods.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"94-99\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10798460/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10798460/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-in-the-Loop Optimization for Terrain- and User-Adaptive Gait Phase Estimation in Phase-Portrait-Based Methods
Gait phase (GP) estimation is a critical component in control of exoskeletons and prostheses, enabling seamless user interaction in various controllers. In recent years, methods based on machine learning and sensor fusion have offered advances in GP estimation, but their high computational costs and reliance on training and numerous sensors present practical challenges. Estimation methods using phase variables, such as phase-portrait-based methods, can circumvent these drawbacks. However, their lower accuracy has limited their application. To address this limitation, we introduce a novel human-in-the-loop (HIL) optimization approach for improving the accuracy of GP estimation in phase-portrait-based methods. The approach is based on geometric manipulation of the phase portraits with linear transformations, which are adapted online by employing Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The performance of this adaptive method (termed AM) is compared against using a fixed transformation (FM) at different walking speeds on level and inclined treadmill. The results demonstrate the superior performance of AM in all tested conditions in terms of accuracy and linearity, with an average RMS error of $1.97 \pm 0.20\%$ . Convergence times for one round of optimization on a low-end single-board computer were less than 11 s on average. This study confirms the potential of leveraging HIL optimization for enhancing the performance of phase-portrait-based methods to reach accuracy levels comparable to more complex state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial BioRob2024 IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1