改进慢性膝关节疼痛静息态原始脑电信号分类的修正特征选择

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-02-07 DOI:10.1109/TBME.2024.3517659
Jean Li, Dirk De Ridder, Divya Adhia, Matthew Hall, Ramakrishnan Mani, Jeremiah D Deng
{"title":"改进慢性膝关节疼痛静息态原始脑电信号分类的修正特征选择","authors":"Jean Li, Dirk De Ridder, Divya Adhia, Matthew Hall, Ramakrishnan Mani, Jeremiah D Deng","doi":"10.1109/TBME.2024.3517659","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Diagnosing pain in research and clinical practices still relies on self-report. This study aims to develop an automatic approach that works on resting-state raw EEG data for chronic knee pain prediction.</p><p><strong>Method: </strong>A new feature selection algorithm called \"modified Sequential Floating Forward Selection\" (mSFFS) is proposed. The improved feature selection scheme can better avoid local minima andexplore alternative search routes.</p><p><strong>Results: </strong>The feature selection obtained by mSFFS displays better class separability as indicated by the Bhattacharyya distance measures and better visualization results. It also outperforms selections generated by other benchmark methods, boosting the test accuracy to 97.5%.</p><p><strong>Conclusion: </strong>The improved feature selection searches out a compact, effective subset of connectivity features that produces competitive performance on chronic knee pain prediction.</p><p><strong>Significance: </strong>We have shown that an automatic approach can be employed to find a compact connectivity feature set that effectively predicts chronic knee pain from EEG. It may shed light on the research of chronic pains and lead to future clinical solutions for diagnosis and treatment.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Feature Selection for Improved Classification of Resting-State Raw EEG Signals in Chronic Knee Pain.\",\"authors\":\"Jean Li, Dirk De Ridder, Divya Adhia, Matthew Hall, Ramakrishnan Mani, Jeremiah D Deng\",\"doi\":\"10.1109/TBME.2024.3517659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Diagnosing pain in research and clinical practices still relies on self-report. This study aims to develop an automatic approach that works on resting-state raw EEG data for chronic knee pain prediction.</p><p><strong>Method: </strong>A new feature selection algorithm called \\\"modified Sequential Floating Forward Selection\\\" (mSFFS) is proposed. The improved feature selection scheme can better avoid local minima andexplore alternative search routes.</p><p><strong>Results: </strong>The feature selection obtained by mSFFS displays better class separability as indicated by the Bhattacharyya distance measures and better visualization results. It also outperforms selections generated by other benchmark methods, boosting the test accuracy to 97.5%.</p><p><strong>Conclusion: </strong>The improved feature selection searches out a compact, effective subset of connectivity features that produces competitive performance on chronic knee pain prediction.</p><p><strong>Significance: </strong>We have shown that an automatic approach can be employed to find a compact connectivity feature set that effectively predicts chronic knee pain from EEG. It may shed light on the research of chronic pains and lead to future clinical solutions for diagnosis and treatment.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2024.3517659\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3517659","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究和临床实践中的疼痛诊断仍然依赖于自我报告。本研究旨在开发一种自动方法,用于静息态原始脑电图数据的慢性膝关节疼痛预测:方法:提出了一种新的特征选择算法,称为 "改进的顺序浮动前向选择"(mSFFS)。方法:提出了一种新的特征选择算法,称为 "改进的顺序浮动前向选择"(mSFFS),改进后的特征选择方案能更好地避免局部最小值,并探索其他搜索路径:结果:mSFFS 得出的特征选择显示出更好的类可分性(如巴塔查里亚距离测量值所示)和更好的可视化效果。它还优于其他基准方法生成的选择,将测试准确率提高到 97.5%:结论:改进后的特征选择能搜索出一个紧凑、有效的连接特征子集,从而在慢性膝关节疼痛预测方面产生具有竞争力的性能:我们已经证明,可以采用自动方法找到一个紧凑的连接特征集,从而有效地通过脑电图预测慢性膝痛。它可能会为慢性疼痛的研究带来启示,并为未来的临床诊断和治疗提供解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Feature Selection for Improved Classification of Resting-State Raw EEG Signals in Chronic Knee Pain.

Objective: Diagnosing pain in research and clinical practices still relies on self-report. This study aims to develop an automatic approach that works on resting-state raw EEG data for chronic knee pain prediction.

Method: A new feature selection algorithm called "modified Sequential Floating Forward Selection" (mSFFS) is proposed. The improved feature selection scheme can better avoid local minima andexplore alternative search routes.

Results: The feature selection obtained by mSFFS displays better class separability as indicated by the Bhattacharyya distance measures and better visualization results. It also outperforms selections generated by other benchmark methods, boosting the test accuracy to 97.5%.

Conclusion: The improved feature selection searches out a compact, effective subset of connectivity features that produces competitive performance on chronic knee pain prediction.

Significance: We have shown that an automatic approach can be employed to find a compact connectivity feature set that effectively predicts chronic knee pain from EEG. It may shed light on the research of chronic pains and lead to future clinical solutions for diagnosis and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
A Two-Stage Ventricular Assist Device for Pediatric Patients. Development and Evaluation of a Robotic System for Safe Cardiac Sheath Delivery. Front Cover Table of Contents GZSL-Lite: A Lightweight Generalized Zero-Shot Learning Network for SSVEP-Based BCIs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1