{"title":"角叉菜独特釉叶的结构颜色和表皮蜡特性。","authors":"Takashi Nobusawa, Takashi Okamoto, Michiharu Nakano, Makoto Kusaba","doi":"10.1093/jxb/eraf115","DOIUrl":null,"url":null,"abstract":"<p><p>The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon. Additionally, Monte Carlo multi-layer (MCML) simulations were performed to model light interactions and explore the structural coloration generated by the epicuticular wax crystals. The wax was found to be predominantly composed of nonacosan-10-ol, forming tubular crystals that enhance reflectance in the long-wavelength UV to blue light range. However, the microstructure alone is not sufficient to produce the glaucous appearance; it arises from the interplay between the wax crystals and the underlying dark tissues rich in chlorophyll. These findings provide insights into the evolutionary adaptations of cycads to UV exposure and contribute to a broader understanding of plant surface lipid biosynthesis and structural coloration, with potential applications in biomimetic material design.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Coloration and Epicuticular Wax Properties of the Distinctive Glaucous Leaves of Encephalartos horridus.\",\"authors\":\"Takashi Nobusawa, Takashi Okamoto, Michiharu Nakano, Makoto Kusaba\",\"doi\":\"10.1093/jxb/eraf115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon. Additionally, Monte Carlo multi-layer (MCML) simulations were performed to model light interactions and explore the structural coloration generated by the epicuticular wax crystals. The wax was found to be predominantly composed of nonacosan-10-ol, forming tubular crystals that enhance reflectance in the long-wavelength UV to blue light range. However, the microstructure alone is not sufficient to produce the glaucous appearance; it arises from the interplay between the wax crystals and the underlying dark tissues rich in chlorophyll. These findings provide insights into the evolutionary adaptations of cycads to UV exposure and contribute to a broader understanding of plant surface lipid biosynthesis and structural coloration, with potential applications in biomimetic material design.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf115\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Structural Coloration and Epicuticular Wax Properties of the Distinctive Glaucous Leaves of Encephalartos horridus.
The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon. Additionally, Monte Carlo multi-layer (MCML) simulations were performed to model light interactions and explore the structural coloration generated by the epicuticular wax crystals. The wax was found to be predominantly composed of nonacosan-10-ol, forming tubular crystals that enhance reflectance in the long-wavelength UV to blue light range. However, the microstructure alone is not sufficient to produce the glaucous appearance; it arises from the interplay between the wax crystals and the underlying dark tissues rich in chlorophyll. These findings provide insights into the evolutionary adaptations of cycads to UV exposure and contribute to a broader understanding of plant surface lipid biosynthesis and structural coloration, with potential applications in biomimetic material design.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.