用于稳定粘土的碳化钙残渣:机械和微观结构特性

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Geotechnics Pub Date : 2025-03-01 DOI:10.1016/j.trgeo.2025.101543
Panpan Tang, Akbar A. Javadi, Raffaele Vinai
{"title":"用于稳定粘土的碳化钙残渣:机械和微观结构特性","authors":"Panpan Tang,&nbsp;Akbar A. Javadi,&nbsp;Raffaele Vinai","doi":"10.1016/j.trgeo.2025.101543","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium carbide residue (CCR), a calcium-rich industrial waste, shows promise in improving mechanical properties of weak soils when used alone or in combination with pozzolanic materials and alkaline activators. This study comprehensively investigated the mechanical performance and stabilisation mechanism of CCR, CCR-fly ash, and alkaline-activated CCR-fly ash on kaolin clay, aiming to clarify their differences in mechanisms, identify their limitations, and promote effective application. The contribution of CCR, fly ash, alkaline activator, and initial water content of soil on enhancing soil strength was quantitively assessed through signal-to-noise ratio and analysis of variance (ANOVA) based on the Taguchi method. The stabilisation mechanism of different CCR-based materials was investigated by assessing the morphological and mineralogical features of stabilised samples. Taguchi analysis revealed that the development of soil strength was primarily influenced by initial water content in the early curing stage, while the contribution of fly ash became larger over time. Variation in CCR content had a limited effect on soil strength across all curing periods, as indicated by low contribution values and low statistical significance in ANOVA. The microstructural analyses revealed a low degree of formation of C-S-H and C-A-H gels in soil stabilised with CCR alone and CCR combined with fly ash, while alkaline activated CCR-fly ash stabilised soil exhibited the coexistence of C-A-S-H and N-A-S-H gels. Taguchi superposition model was effectively used to estimate compressive strength results and supported the determination of suitable CCR-based materials for specific strength requirements.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101543"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium carbide residue for clay stabilisation: mechanical and microstructural properties\",\"authors\":\"Panpan Tang,&nbsp;Akbar A. Javadi,&nbsp;Raffaele Vinai\",\"doi\":\"10.1016/j.trgeo.2025.101543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Calcium carbide residue (CCR), a calcium-rich industrial waste, shows promise in improving mechanical properties of weak soils when used alone or in combination with pozzolanic materials and alkaline activators. This study comprehensively investigated the mechanical performance and stabilisation mechanism of CCR, CCR-fly ash, and alkaline-activated CCR-fly ash on kaolin clay, aiming to clarify their differences in mechanisms, identify their limitations, and promote effective application. The contribution of CCR, fly ash, alkaline activator, and initial water content of soil on enhancing soil strength was quantitively assessed through signal-to-noise ratio and analysis of variance (ANOVA) based on the Taguchi method. The stabilisation mechanism of different CCR-based materials was investigated by assessing the morphological and mineralogical features of stabilised samples. Taguchi analysis revealed that the development of soil strength was primarily influenced by initial water content in the early curing stage, while the contribution of fly ash became larger over time. Variation in CCR content had a limited effect on soil strength across all curing periods, as indicated by low contribution values and low statistical significance in ANOVA. The microstructural analyses revealed a low degree of formation of C-S-H and C-A-H gels in soil stabilised with CCR alone and CCR combined with fly ash, while alkaline activated CCR-fly ash stabilised soil exhibited the coexistence of C-A-S-H and N-A-S-H gels. Taguchi superposition model was effectively used to estimate compressive strength results and supported the determination of suitable CCR-based materials for specific strength requirements.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"51 \",\"pages\":\"Article 101543\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225000625\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000625","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calcium carbide residue for clay stabilisation: mechanical and microstructural properties
Calcium carbide residue (CCR), a calcium-rich industrial waste, shows promise in improving mechanical properties of weak soils when used alone or in combination with pozzolanic materials and alkaline activators. This study comprehensively investigated the mechanical performance and stabilisation mechanism of CCR, CCR-fly ash, and alkaline-activated CCR-fly ash on kaolin clay, aiming to clarify their differences in mechanisms, identify their limitations, and promote effective application. The contribution of CCR, fly ash, alkaline activator, and initial water content of soil on enhancing soil strength was quantitively assessed through signal-to-noise ratio and analysis of variance (ANOVA) based on the Taguchi method. The stabilisation mechanism of different CCR-based materials was investigated by assessing the morphological and mineralogical features of stabilised samples. Taguchi analysis revealed that the development of soil strength was primarily influenced by initial water content in the early curing stage, while the contribution of fly ash became larger over time. Variation in CCR content had a limited effect on soil strength across all curing periods, as indicated by low contribution values and low statistical significance in ANOVA. The microstructural analyses revealed a low degree of formation of C-S-H and C-A-H gels in soil stabilised with CCR alone and CCR combined with fly ash, while alkaline activated CCR-fly ash stabilised soil exhibited the coexistence of C-A-S-H and N-A-S-H gels. Taguchi superposition model was effectively used to estimate compressive strength results and supported the determination of suitable CCR-based materials for specific strength requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
期刊最新文献
Assembly connection joint strengthening approach using geosynthetics for future sustainable prefabricated bridge deck asphalt pavement Experimental investigation of the heave behaviors of ballastless railways on expansive soil foundations Stochastic investigation of the relationship between track geometry and ballast degradation rates Integral railway bridges with different transition zone designs Utilising construction and demolition waste in soft soil stabilisation: A prediction model for enhanced strength and stiffness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1