通过脊髓 SGK1/NF-κB 信号通路调节 SGK1、NR2A 和 NR2B 的表达,阐明右美托咪定诱导的神经病理性疼痛镇痛耐受机制

Wang Huikang, Cao Shiya, Pan Di, Faisal Ayub Kiani, Li Hao, Nan Sha, Lin Xuan, Mahmoud M. Abouelfetouh, Zulfiqar Ahmed, Ding Mingxing, Ding Yi
{"title":"通过脊髓 SGK1/NF-κB 信号通路调节 SGK1、NR2A 和 NR2B 的表达,阐明右美托咪定诱导的神经病理性疼痛镇痛耐受机制","authors":"Wang Huikang,&nbsp;Cao Shiya,&nbsp;Pan Di,&nbsp;Faisal Ayub Kiani,&nbsp;Li Hao,&nbsp;Nan Sha,&nbsp;Lin Xuan,&nbsp;Mahmoud M. Abouelfetouh,&nbsp;Zulfiqar Ahmed,&nbsp;Ding Mingxing,&nbsp;Ding Yi","doi":"10.1111/jcmm.70372","DOIUrl":null,"url":null,"abstract":"<p>Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the <i>α2</i>-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (<i>n</i> = 48), DEX Tolerance Model Groups (<i>n</i> = 32), <i>SGK1</i> Inhibitor GSK650394 Groups (<i>n</i> = 48), and <i>NF</i>-<i>κB</i> Inhibitor PDTC Groups (<i>n</i> = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (<i>p</i> &lt; 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (<i>p</i> &lt; 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (<i>p</i> &lt; 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (<i>p</i> &lt; 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of <i>SGK1</i>, <i>NR2A</i>, and <i>NR2B</i> subunits (<i>p</i> &lt; 0.05). Inhibiting <i>SGK1</i> mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (<i>p</i> &lt; 0.05). Moreover, <i>NF</i>-<i>κB</i> inhibition reversed DEX-induced tolerance and implicated the <i>SGK1</i>-<i>NF</i>-<i>κB</i> pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70372","citationCount":"0","resultStr":"{\"title\":\"Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway\",\"authors\":\"Wang Huikang,&nbsp;Cao Shiya,&nbsp;Pan Di,&nbsp;Faisal Ayub Kiani,&nbsp;Li Hao,&nbsp;Nan Sha,&nbsp;Lin Xuan,&nbsp;Mahmoud M. Abouelfetouh,&nbsp;Zulfiqar Ahmed,&nbsp;Ding Mingxing,&nbsp;Ding Yi\",\"doi\":\"10.1111/jcmm.70372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the <i>α2</i>-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (<i>n</i> = 48), DEX Tolerance Model Groups (<i>n</i> = 32), <i>SGK1</i> Inhibitor GSK650394 Groups (<i>n</i> = 48), and <i>NF</i>-<i>κB</i> Inhibitor PDTC Groups (<i>n</i> = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (<i>p</i> &lt; 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (<i>p</i> &lt; 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (<i>p</i> &lt; 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (<i>p</i> &lt; 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of <i>SGK1</i>, <i>NR2A</i>, and <i>NR2B</i> subunits (<i>p</i> &lt; 0.05). Inhibiting <i>SGK1</i> mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (<i>p</i> &lt; 0.05). Moreover, <i>NF</i>-<i>κB</i> inhibition reversed DEX-induced tolerance and implicated the <i>SGK1</i>-<i>NF</i>-<i>κB</i> pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70372\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway

Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the α2-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (n = 48), DEX Tolerance Model Groups (n = 32), SGK1 Inhibitor GSK650394 Groups (n = 48), and NF-κB Inhibitor PDTC Groups (n = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (p < 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (p < 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (p < 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (p < 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of SGK1, NR2A, and NR2B subunits (p < 0.05). Inhibiting SGK1 mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (p < 0.05). Moreover, NF-κB inhibition reversed DEX-induced tolerance and implicated the SGK1-NF-κB pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
期刊最新文献
Issue Information GABRD Accelerates Tumour Progression via Regulating CCND1 Signalling Pathway in Gastric Cancer C-Terminal Hsp90 Inhibitors Overcome MEK and BRAF Inhibitor Resistance in Melanoma Cinobufagin Enhances the Sensitivity of Cisplatin-Resistant Lung Cancer Cells to Chemotherapy by Inhibiting the PI3K/AKT and MAPK/ERK Pathways Tyr1497 in the BRG1 Bromodomain of the SWI/SNF Complex is Critical for the Binding and Function of a Selective BRG1 Inhibitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1