IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-03-21 DOI:10.1002/adma.202504135
Bo Shao, Tianyun Liu, Deng-Bing Li, Linxing Meng, Jianyuan Wang, Wei Zhai, Liang Li
{"title":"Pressure-Assisted Ni 3d–S 3p Hybridization within Targeted In–S Layer for Enhanced Photocatalytic Hydrogen Production","authors":"Bo Shao, Tianyun Liu, Deng-Bing Li, Linxing Meng, Jianyuan Wang, Wei Zhai, Liang Li","doi":"10.1002/adma.202504135","DOIUrl":null,"url":null,"abstract":"Solar-driven hydrogen production is significant for achieving carbon neutrality but is limited by unsatisfactory surface catalytic reaction kinetics. Layer regulation can impact carrier transmission or catalytic behavior, but the specific effects on the oxygen or hydrogen evolution reaction (OER or HER) remain unclear, and atomic layer level modulation for maxing HER is challenging. Here the distinct roles of modulated Zn–S or In–S surface layers in ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) for the OER and HER, respectively, are disentangled. Moreover, the extensive characterizations and computational results demonstrate that stressful environments enable individual modulation and introduce Ni into the surface In–S layer rather than the easily alterable Zn–S layer, creating deeper hybridized electronic states of Ni 3<i>d</i>–S 3<i>p</i>, optimizing H<sup>*</sup> adsorption/desorption, and maximizing surface catalytic benefits for the HER. Consequently, the optimized ZIS exhibited a photocatalytic hydrogen production rate of up to 18.19 mmol g<sup>−1</sup> h<sup>−1</sup>, ≈32 times higher than pristine ZIS. This investigation expands the application scenarios of ultrasonic technology and inspires other precise control types, such as defects and crystal plane engineering, etc.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"20 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504135","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的氢气生产对实现碳中和具有重要意义,但由于表面催化反应动力学不尽人意而受到限制。表层调控会影响载流子传输或催化行为,但对氧或氢进化反应(OER 或 HER)的具体影响仍不清楚,而原子层级调控以最大限度地提高 HER 是一项挑战。在这里,ZnIn2S4(ZIS)中经过调制的 Zn-S 或 In-S 表层分别对 OER 和 HER 起着不同的作用。此外,大量的表征和计算结果表明,应力环境可实现单独调制,并将镍引入表面 In-S 层而不是易于改变的 Zn-S 层,从而产生更深的镍 3d-S 3p 杂化电子态,优化 H* 的吸附/解吸,并最大限度地提高 HER 的表面催化效益。因此,优化后的 ZIS 的光催化产氢率高达 18.19 mmol g-1 h-1,是原始 ZIS 的 32 倍。这项研究拓展了超声波技术的应用范围,并对其他精确控制类型(如缺陷和晶面工程等)产生了启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pressure-Assisted Ni 3d–S 3p Hybridization within Targeted In–S Layer for Enhanced Photocatalytic Hydrogen Production
Solar-driven hydrogen production is significant for achieving carbon neutrality but is limited by unsatisfactory surface catalytic reaction kinetics. Layer regulation can impact carrier transmission or catalytic behavior, but the specific effects on the oxygen or hydrogen evolution reaction (OER or HER) remain unclear, and atomic layer level modulation for maxing HER is challenging. Here the distinct roles of modulated Zn–S or In–S surface layers in ZnIn2S4 (ZIS) for the OER and HER, respectively, are disentangled. Moreover, the extensive characterizations and computational results demonstrate that stressful environments enable individual modulation and introduce Ni into the surface In–S layer rather than the easily alterable Zn–S layer, creating deeper hybridized electronic states of Ni 3d–S 3p, optimizing H* adsorption/desorption, and maximizing surface catalytic benefits for the HER. Consequently, the optimized ZIS exhibited a photocatalytic hydrogen production rate of up to 18.19 mmol g−1 h−1, ≈32 times higher than pristine ZIS. This investigation expands the application scenarios of ultrasonic technology and inspires other precise control types, such as defects and crystal plane engineering, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Revealing the Coordination and Mediation Mechanism of Arylboronic Acids Toward Energy-Dense Li-S Batteries Hot-Exciton-Involved Dual-Channel Stepwise Energy Transfer Enabling Efficient and Stable Blue OLEDs with Narrow Emission and High Luminance A Natural Lignification Inspired Super-Hard Wood-Based Composites with Extreme Resilience LiC6@Li as a Promising Substitution of Li Metal Counter Electrode for Low-Temperature Battery Evaluation Cartilage-Adaptive Hydrogels via the Synergy Strategy of Protein Templating and Mechanical Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1