{"title":"控制和减轻禽流感的知识发现过程综述。","authors":"Samira Yousefi Naghani, Rozita Dara, Zvonimir Poljak, Shayan Sharif","doi":"10.1017/S1466252319000033","DOIUrl":null,"url":null,"abstract":"<p><p>In the last several decades, avian influenza virus has caused numerous outbreaks around the world. These outbreaks pose a significant threat to the poultry industry and also to public health. When an avian influenza (AI) outbreak occurs, it is critical to make informed decisions about the potential risks, impact, and control measures. To this end, many modeling approaches have been proposed to acquire knowledge from different sources of data and perspectives to enhance decision making. Although some of these approaches have shown to be effective, they do not follow the process of knowledge discovery in databases (KDD). KDD is an iterative process, consisting of five steps, that aims at extracting unknown and useful information from the data. The present review attempts to survey AI modeling methods in the context of KDD process. We first divide the modeling techniques used in AI into two main categories: data-intensive modeling and small-data modeling. We then investigate the existing gaps in the literature and suggest several potential directions and techniques for future studies. Overall, this review provides insights into the control of AI in terms of the risk of introduction and spread of the virus.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":"20 1","pages":"61-71"},"PeriodicalIF":4.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1466252319000033","citationCount":"2","resultStr":"{\"title\":\"A review of knowledge discovery process in control and mitigation of avian influenza.\",\"authors\":\"Samira Yousefi Naghani, Rozita Dara, Zvonimir Poljak, Shayan Sharif\",\"doi\":\"10.1017/S1466252319000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last several decades, avian influenza virus has caused numerous outbreaks around the world. These outbreaks pose a significant threat to the poultry industry and also to public health. When an avian influenza (AI) outbreak occurs, it is critical to make informed decisions about the potential risks, impact, and control measures. To this end, many modeling approaches have been proposed to acquire knowledge from different sources of data and perspectives to enhance decision making. Although some of these approaches have shown to be effective, they do not follow the process of knowledge discovery in databases (KDD). KDD is an iterative process, consisting of five steps, that aims at extracting unknown and useful information from the data. The present review attempts to survey AI modeling methods in the context of KDD process. We first divide the modeling techniques used in AI into two main categories: data-intensive modeling and small-data modeling. We then investigate the existing gaps in the literature and suggest several potential directions and techniques for future studies. Overall, this review provides insights into the control of AI in terms of the risk of introduction and spread of the virus.</p>\",\"PeriodicalId\":51313,\"journal\":{\"name\":\"Animal Health Research Reviews\",\"volume\":\"20 1\",\"pages\":\"61-71\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1466252319000033\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Health Research Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S1466252319000033\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Health Research Reviews","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S1466252319000033","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
A review of knowledge discovery process in control and mitigation of avian influenza.
In the last several decades, avian influenza virus has caused numerous outbreaks around the world. These outbreaks pose a significant threat to the poultry industry and also to public health. When an avian influenza (AI) outbreak occurs, it is critical to make informed decisions about the potential risks, impact, and control measures. To this end, many modeling approaches have been proposed to acquire knowledge from different sources of data and perspectives to enhance decision making. Although some of these approaches have shown to be effective, they do not follow the process of knowledge discovery in databases (KDD). KDD is an iterative process, consisting of five steps, that aims at extracting unknown and useful information from the data. The present review attempts to survey AI modeling methods in the context of KDD process. We first divide the modeling techniques used in AI into two main categories: data-intensive modeling and small-data modeling. We then investigate the existing gaps in the literature and suggest several potential directions and techniques for future studies. Overall, this review provides insights into the control of AI in terms of the risk of introduction and spread of the virus.
期刊介绍:
Animal Health Research Reviews provides an international forum for the publication of reviews and commentaries on all aspects of animal health. Papers include in-depth analyses and broader overviews of all facets of health and science in both domestic and wild animals. Major subject areas include physiology and pharmacology, parasitology, bacteriology, food and environmental safety, epidemiology and virology. The journal is of interest to researchers involved in animal health, parasitologists, food safety experts and academics interested in all aspects of animal production and welfare.