Ian McAdams, Hannah Kenyon, Dennis Bourbeau, Margot S Damaser, Christian Zorman, Steve J A Majerus
{"title":"用于神经调制研究的低成本、可植入式无线传感器平台。","authors":"Ian McAdams, Hannah Kenyon, Dennis Bourbeau, Margot S Damaser, Christian Zorman, Steve J A Majerus","doi":"10.1109/BIOCAS.2018.8584729","DOIUrl":null,"url":null,"abstract":"<p><p>The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020620/pdf/nihms-1068038.pdf","citationCount":"0","resultStr":"{\"title\":\"Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.\",\"authors\":\"Ian McAdams, Hannah Kenyon, Dennis Bourbeau, Margot S Damaser, Christian Zorman, Steve J A Majerus\",\"doi\":\"10.1109/BIOCAS.2018.8584729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.</p>\",\"PeriodicalId\":73279,\"journal\":{\"name\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"2018 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020620/pdf/nihms-1068038.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2018.8584729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2018.8584729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
人们对外周神经在健康和疾病时调节主要器官功能的作用还不甚了解。阐明在无麻醉状态下生物标志物与神经活动之间的关系,对于推进未来的自律神经器官控制研究和提高神经调控治疗方法的精确性至关重要。在此,我们介绍一种简单、可定制的现成组件传感器平台,以满足在有意识的自由运动状态下研究不同器官的研究需求。该平台由小型可充电纽扣电池、能量收集集成电路、低功耗微控制器、低功耗压力传感器、可定制数量的共阳极电极、感应充电输入和 OOK 感应传输组成。本报告介绍了一个案例研究,展示了一种用于长期监测的膀胱植入物,该植入物采用了一种新颖的非密封封装方法。定制平台采用两种睡眠模式,最大限度地降低了电池负荷,在传感和传输过程中的最大时均电流为 125 微安,微控制器的静态电流为 95 纳安。
Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.
The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.