Sarah L. Thomson;Gabriela Ochoa;Sébastien Verel;Nadarajen Veerapen
{"title":"推断未来景观:采样局部最优水平","authors":"Sarah L. Thomson;Gabriela Ochoa;Sébastien Verel;Nadarajen Veerapen","doi":"10.1162/evco_a_00271","DOIUrl":null,"url":null,"abstract":"<para>Connection patterns among <italic>Local Optima Networks</i> (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON <italic>sampling</i> algorithms are therefore important. In this article, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this “super-sampling”: a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other.</para>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"28 4","pages":"621-641"},"PeriodicalIF":4.6000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/evco_a_00271","citationCount":"11","resultStr":"{\"title\":\"Inferring Future Landscapes: Sampling the Local Optima Level\",\"authors\":\"Sarah L. Thomson;Gabriela Ochoa;Sébastien Verel;Nadarajen Veerapen\",\"doi\":\"10.1162/evco_a_00271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<para>Connection patterns among <italic>Local Optima Networks</i> (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON <italic>sampling</i> algorithms are therefore important. In this article, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this “super-sampling”: a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other.</para>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"28 4\",\"pages\":\"621-641\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1162/evco_a_00271\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9277962/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9277962/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Inferring Future Landscapes: Sampling the Local Optima Level
Connection patterns among Local Optima Networks (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON sampling algorithms are therefore important. In this article, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this “super-sampling”: a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.