[植物抗病毒防御系统抑制病毒RNA复制的研究]。

Uirusu Pub Date : 2019-01-01 DOI:10.2222/jsv.69.83
Kazuhiro Ishibashi
{"title":"[植物抗病毒防御系统抑制病毒RNA复制的研究]。","authors":"Kazuhiro Ishibashi","doi":"10.2222/jsv.69.83","DOIUrl":null,"url":null,"abstract":"Tm-1 is a semi-dominant resistance gene of tomato against tomato mosaic virus (ToMV). I identified the Tm-1 gene product through biochemical purification of an inhibitor of in vitro ToMV RNA replication from a tomato cell extract. Tm-1 protein binds ToMV replication proteins and inhibits formation of ToMV replication complex. Replication proteins of resistance-breaking ToMV mutants did not bind Tm-1, suggesting that ToMV mutants break the resistance by escaping the inhibitory interaction. Through molecular evolutionary approach, I found that a small part of the Tm-1 gene is under positive selection, suggesting that this region underwent rapid amino acid changes against selective pressure by ToMV infection. Crystal structures of a fragment of the Tm-1 protein and a complex between the Tm-1 fragment and a ToMV helicase domain fragment of replication proteins revealed that Tm-1 and ToMV have coevolved by changing both sides of the interaction interface. ToMV-susceptible tomato cultivars have a Tm-1 allele, tm-1, whose product neither binds to ToMV replication proteins nor inhibits RNA replication. I found that tm-1 inhibits multiplication of tobacco green mild mosaic virus (TMGMV) and pepper mild mottle virus (PMMoV), which does not adapt to tomato. A TMGMV mutant that can escape the inhibition by tm-1 lost the ability to suppress RNA silencing. Therefore, the multifunctionality of replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges.","PeriodicalId":75275,"journal":{"name":"Uirusu","volume":"69 1","pages":"83-90"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Studies of a plant antiviral defense system that inhibits viral RNA replication].\",\"authors\":\"Kazuhiro Ishibashi\",\"doi\":\"10.2222/jsv.69.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tm-1 is a semi-dominant resistance gene of tomato against tomato mosaic virus (ToMV). I identified the Tm-1 gene product through biochemical purification of an inhibitor of in vitro ToMV RNA replication from a tomato cell extract. Tm-1 protein binds ToMV replication proteins and inhibits formation of ToMV replication complex. Replication proteins of resistance-breaking ToMV mutants did not bind Tm-1, suggesting that ToMV mutants break the resistance by escaping the inhibitory interaction. Through molecular evolutionary approach, I found that a small part of the Tm-1 gene is under positive selection, suggesting that this region underwent rapid amino acid changes against selective pressure by ToMV infection. Crystal structures of a fragment of the Tm-1 protein and a complex between the Tm-1 fragment and a ToMV helicase domain fragment of replication proteins revealed that Tm-1 and ToMV have coevolved by changing both sides of the interaction interface. ToMV-susceptible tomato cultivars have a Tm-1 allele, tm-1, whose product neither binds to ToMV replication proteins nor inhibits RNA replication. I found that tm-1 inhibits multiplication of tobacco green mild mosaic virus (TMGMV) and pepper mild mottle virus (PMMoV), which does not adapt to tomato. A TMGMV mutant that can escape the inhibition by tm-1 lost the ability to suppress RNA silencing. Therefore, the multifunctionality of replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges.\",\"PeriodicalId\":75275,\"journal\":{\"name\":\"Uirusu\",\"volume\":\"69 1\",\"pages\":\"83-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uirusu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2222/jsv.69.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uirusu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2222/jsv.69.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Studies of a plant antiviral defense system that inhibits viral RNA replication].
Tm-1 is a semi-dominant resistance gene of tomato against tomato mosaic virus (ToMV). I identified the Tm-1 gene product through biochemical purification of an inhibitor of in vitro ToMV RNA replication from a tomato cell extract. Tm-1 protein binds ToMV replication proteins and inhibits formation of ToMV replication complex. Replication proteins of resistance-breaking ToMV mutants did not bind Tm-1, suggesting that ToMV mutants break the resistance by escaping the inhibitory interaction. Through molecular evolutionary approach, I found that a small part of the Tm-1 gene is under positive selection, suggesting that this region underwent rapid amino acid changes against selective pressure by ToMV infection. Crystal structures of a fragment of the Tm-1 protein and a complex between the Tm-1 fragment and a ToMV helicase domain fragment of replication proteins revealed that Tm-1 and ToMV have coevolved by changing both sides of the interaction interface. ToMV-susceptible tomato cultivars have a Tm-1 allele, tm-1, whose product neither binds to ToMV replication proteins nor inhibits RNA replication. I found that tm-1 inhibits multiplication of tobacco green mild mosaic virus (TMGMV) and pepper mild mottle virus (PMMoV), which does not adapt to tomato. A TMGMV mutant that can escape the inhibition by tm-1 lost the ability to suppress RNA silencing. Therefore, the multifunctionality of replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Endogenous viral emelement limit cognate virus replication in mosquito vectors]. [Neutralization of hepatitis B virus with vaccine-escape mutations by novel hepatitis B vaccine with large-HBs antigen].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1