{"title":"宫颈鳞状细胞癌预后的选择性剪接特征","authors":"Hua-yu Wu, Qi-qi Li, Liang Liang, Lan-lan Qiu, Hong-wei Wei, Bing-ying Huang, Chen Gang-, Rong-quan He, Zhi-guang Huang, Wei Hou, Qi-ping Hu, Shang-ling Pan","doi":"10.1049/iet-syb.2019.0095","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Basing on alternative splicing events (ASEs) databases, the authors herein aim to explore potential prognostic biomarkers for cervical squamous cell carcinoma (CESC). mRNA expression profiles and relevant clinical data of 223 patients with CESC were obtained from The Cancer Genome Atlas (TCGA). Correlated genes, ASEs and percent-splice-in (PSI) were downloaded from SpliceSeq, respectively. The PSI values of survival-associated alternative splicing events (SASEs) were used to construct the basis of a prognostic index (PI). A protein–protein interaction (PPI) network of genes related to SASEs was generated by STRING and analysed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Consequently, 41,776 ASEs were discovered in 19,724 genes, 2596 of which linked with 3669 SASEs. The PPI network of SASEs related genes revealed that TP53 and UBA52 were core genes. The low-risk group had a longer survival period than high-risk counterparts, both groups being defined according to PI constructed upon the top 20 splicing events or PI on the overall splicing events. The AUC value of ROC reached up to 0.88, demonstrating the prognostic potential of PI in CESC. These findings suggested that ASEs involve in the pathogenesis of CESC and may serve as promising prognostic biomarkers for this female malignancy.</p>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"14 6","pages":"314-322"},"PeriodicalIF":1.9000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687194/pdf/SYB2-14-314.pdf","citationCount":"5","resultStr":"{\"title\":\"Prognostic alternative splicing signature in cervical squamous cell carcinoma\",\"authors\":\"Hua-yu Wu, Qi-qi Li, Liang Liang, Lan-lan Qiu, Hong-wei Wei, Bing-ying Huang, Chen Gang-, Rong-quan He, Zhi-guang Huang, Wei Hou, Qi-ping Hu, Shang-ling Pan\",\"doi\":\"10.1049/iet-syb.2019.0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Basing on alternative splicing events (ASEs) databases, the authors herein aim to explore potential prognostic biomarkers for cervical squamous cell carcinoma (CESC). mRNA expression profiles and relevant clinical data of 223 patients with CESC were obtained from The Cancer Genome Atlas (TCGA). Correlated genes, ASEs and percent-splice-in (PSI) were downloaded from SpliceSeq, respectively. The PSI values of survival-associated alternative splicing events (SASEs) were used to construct the basis of a prognostic index (PI). A protein–protein interaction (PPI) network of genes related to SASEs was generated by STRING and analysed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Consequently, 41,776 ASEs were discovered in 19,724 genes, 2596 of which linked with 3669 SASEs. The PPI network of SASEs related genes revealed that TP53 and UBA52 were core genes. The low-risk group had a longer survival period than high-risk counterparts, both groups being defined according to PI constructed upon the top 20 splicing events or PI on the overall splicing events. The AUC value of ROC reached up to 0.88, demonstrating the prognostic potential of PI in CESC. These findings suggested that ASEs involve in the pathogenesis of CESC and may serve as promising prognostic biomarkers for this female malignancy.</p>\\n </div>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"14 6\",\"pages\":\"314-322\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687194/pdf/SYB2-14-314.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2019.0095\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2019.0095","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Prognostic alternative splicing signature in cervical squamous cell carcinoma
Basing on alternative splicing events (ASEs) databases, the authors herein aim to explore potential prognostic biomarkers for cervical squamous cell carcinoma (CESC). mRNA expression profiles and relevant clinical data of 223 patients with CESC were obtained from The Cancer Genome Atlas (TCGA). Correlated genes, ASEs and percent-splice-in (PSI) were downloaded from SpliceSeq, respectively. The PSI values of survival-associated alternative splicing events (SASEs) were used to construct the basis of a prognostic index (PI). A protein–protein interaction (PPI) network of genes related to SASEs was generated by STRING and analysed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Consequently, 41,776 ASEs were discovered in 19,724 genes, 2596 of which linked with 3669 SASEs. The PPI network of SASEs related genes revealed that TP53 and UBA52 were core genes. The low-risk group had a longer survival period than high-risk counterparts, both groups being defined according to PI constructed upon the top 20 splicing events or PI on the overall splicing events. The AUC value of ROC reached up to 0.88, demonstrating the prognostic potential of PI in CESC. These findings suggested that ASEs involve in the pathogenesis of CESC and may serve as promising prognostic biomarkers for this female malignancy.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.