{"title":"[Epstein-Barr病毒高产复制期间细胞环境的动态变化]。","authors":"Yoshitaka Sato","doi":"10.2222/jsv.70.83","DOIUrl":null,"url":null,"abstract":"<p><p>Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.</p>","PeriodicalId":75275,"journal":{"name":"Uirusu","volume":"70 1","pages":"83-90"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Dynamic changes of cellular environment during Epstein-Barr virus productive replication].\",\"authors\":\"Yoshitaka Sato\",\"doi\":\"10.2222/jsv.70.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.</p>\",\"PeriodicalId\":75275,\"journal\":{\"name\":\"Uirusu\",\"volume\":\"70 1\",\"pages\":\"83-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uirusu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2222/jsv.70.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uirusu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2222/jsv.70.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Dynamic changes of cellular environment during Epstein-Barr virus productive replication].
Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.