{"title":"陆生等足类(甲壳纲:等足纲:蛇足纲)中具有纹理滑动表面的铰链关节结构。","authors":"Miloš Vittori","doi":"10.1186/s40851-021-00177-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study of joints in terrestrial arthropods can provide insights into the evolutionary optimization of contacting surfaces that slide without lubrication. This work reports on the structure of the joint between the propodus and the dactylus in terrestrial isopods, the most successful group of crustaceans on land, focusing on the woodlouse Porcellio scaber.</p><p><strong>Methods: </strong>The joints were studied using fluorescence microscopy, 3D reconstruction, scanning electron microscopy and transmission electron microscopy. The obtained results were functionally interpreted using high-speed video recordings by analyzing the use of the joint during locomotion.</p><p><strong>Results: </strong>In the joint, which allows the dactylus to move in a single plain, a semicircular process on the propodus fits into a groove on the dactylus and guides its movement. The sliding surfaces of the propodal process are textured in the form of parallel epicuticular ridges a few hundred nanometers thick. This texturing is selective: while the less heavily loaded surfaces are textured, the surfaces that support the isopod during standing and walking are smooth. In contrast, the groove on the dactylus is completely smooth. We found a similar surface texture in several other species of terrestrial isopods and one aquatic isopod.</p><p><strong>Conclusions: </strong>The selective texturing of the joint may reduce wear by eliminating small particles. This effect of the ridges was confirmed using electron microscopy. The absence of ridges on heavily loaded surfaces may enhance the dissipation of forces in these regions.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"7 1","pages":"7"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40851-021-00177-9","citationCount":"2","resultStr":"{\"title\":\"Structure of a hinge joint with textured sliding surfaces in terrestrial isopods (Crustacea: Isopoda: Oniscidea).\",\"authors\":\"Miloš Vittori\",\"doi\":\"10.1186/s40851-021-00177-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The study of joints in terrestrial arthropods can provide insights into the evolutionary optimization of contacting surfaces that slide without lubrication. This work reports on the structure of the joint between the propodus and the dactylus in terrestrial isopods, the most successful group of crustaceans on land, focusing on the woodlouse Porcellio scaber.</p><p><strong>Methods: </strong>The joints were studied using fluorescence microscopy, 3D reconstruction, scanning electron microscopy and transmission electron microscopy. The obtained results were functionally interpreted using high-speed video recordings by analyzing the use of the joint during locomotion.</p><p><strong>Results: </strong>In the joint, which allows the dactylus to move in a single plain, a semicircular process on the propodus fits into a groove on the dactylus and guides its movement. The sliding surfaces of the propodal process are textured in the form of parallel epicuticular ridges a few hundred nanometers thick. This texturing is selective: while the less heavily loaded surfaces are textured, the surfaces that support the isopod during standing and walking are smooth. In contrast, the groove on the dactylus is completely smooth. We found a similar surface texture in several other species of terrestrial isopods and one aquatic isopod.</p><p><strong>Conclusions: </strong>The selective texturing of the joint may reduce wear by eliminating small particles. This effect of the ridges was confirmed using electron microscopy. The absence of ridges on heavily loaded surfaces may enhance the dissipation of forces in these regions.</p>\",\"PeriodicalId\":54280,\"journal\":{\"name\":\"Zoological Letters\",\"volume\":\"7 1\",\"pages\":\"7\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40851-021-00177-9\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40851-021-00177-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-021-00177-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Structure of a hinge joint with textured sliding surfaces in terrestrial isopods (Crustacea: Isopoda: Oniscidea).
Background: The study of joints in terrestrial arthropods can provide insights into the evolutionary optimization of contacting surfaces that slide without lubrication. This work reports on the structure of the joint between the propodus and the dactylus in terrestrial isopods, the most successful group of crustaceans on land, focusing on the woodlouse Porcellio scaber.
Methods: The joints were studied using fluorescence microscopy, 3D reconstruction, scanning electron microscopy and transmission electron microscopy. The obtained results were functionally interpreted using high-speed video recordings by analyzing the use of the joint during locomotion.
Results: In the joint, which allows the dactylus to move in a single plain, a semicircular process on the propodus fits into a groove on the dactylus and guides its movement. The sliding surfaces of the propodal process are textured in the form of parallel epicuticular ridges a few hundred nanometers thick. This texturing is selective: while the less heavily loaded surfaces are textured, the surfaces that support the isopod during standing and walking are smooth. In contrast, the groove on the dactylus is completely smooth. We found a similar surface texture in several other species of terrestrial isopods and one aquatic isopod.
Conclusions: The selective texturing of the joint may reduce wear by eliminating small particles. This effect of the ridges was confirmed using electron microscopy. The absence of ridges on heavily loaded surfaces may enhance the dissipation of forces in these regions.
Zoological LettersAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.60
自引率
0.00%
发文量
12
审稿时长
10 weeks
期刊介绍:
Zoological Letters is an open access journal that publishes new and important findings in the zoological sciences. As a sister journal to Zoological Science, Zoological Letters covers a wide range of basic fields of zoology, from taxonomy to bioinformatics. We also welcome submissions of paleontology reports as part of our effort to contribute to the development of new perspectives in evolutionary zoology. Our goal is to serve as a global publishing forum for fundamental researchers in all fields of zoology.