一种改进爆裂神经元尖峰排序的调制模板匹配方法。

Payam S Shabestari, Alessio P Buccino, Sreedhar S Kumar, Alessandra Pedrocchi, Andreas Hierlemann
{"title":"一种改进爆裂神经元尖峰排序的调制模板匹配方法。","authors":"Payam S Shabestari,&nbsp;Alessio P Buccino,&nbsp;Sreedhar S Kumar,&nbsp;Alessandra Pedrocchi,&nbsp;Andreas Hierlemann","doi":"10.1109/BioCAS49922.2021.9644995","DOIUrl":null,"url":null,"abstract":"<p><p>In extracellular neural electrophysiology, individual spikes have to be assigned to their cell of origin in a procedure called \"spike sorting\". Spike sorting is an unsupervised problem, since no ground-truth information is generally available. Here, we focus on improving spike sorting performance, particularly during periods of high synchronous activity or so-called \"bursting\". Bursting entails systematic changes in spike shapes and amplitudes and remains a challenge for current spike sorting schemes. We use realistic simulated bursting recordings of high-density micro-electrode arrays (HD-MEAs) and we present a fully automated algorithm based on template matching with a focus on recovering missed spikes during bursts. To compare and benchmark spike-sorting performance after applying our method, we used ground-truth information of simulated recordings. We show that our approach can be effective in improving spike sorting performance during bursting. Further validation with experimental recordings is necessary.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612198/pdf/EMS140681.pdf","citationCount":"3","resultStr":"{\"title\":\"A modulated template-matching approach to improve spike sorting of bursting neurons.\",\"authors\":\"Payam S Shabestari,&nbsp;Alessio P Buccino,&nbsp;Sreedhar S Kumar,&nbsp;Alessandra Pedrocchi,&nbsp;Andreas Hierlemann\",\"doi\":\"10.1109/BioCAS49922.2021.9644995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In extracellular neural electrophysiology, individual spikes have to be assigned to their cell of origin in a procedure called \\\"spike sorting\\\". Spike sorting is an unsupervised problem, since no ground-truth information is generally available. Here, we focus on improving spike sorting performance, particularly during periods of high synchronous activity or so-called \\\"bursting\\\". Bursting entails systematic changes in spike shapes and amplitudes and remains a challenge for current spike sorting schemes. We use realistic simulated bursting recordings of high-density micro-electrode arrays (HD-MEAs) and we present a fully automated algorithm based on template matching with a focus on recovering missed spikes during bursts. To compare and benchmark spike-sorting performance after applying our method, we used ground-truth information of simulated recordings. We show that our approach can be effective in improving spike sorting performance during bursting. Further validation with experimental recordings is necessary.</p>\",\"PeriodicalId\":73279,\"journal\":{\"name\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612198/pdf/EMS140681.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS49922.2021.9644995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS49922.2021.9644995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在细胞外神经电生理学中,单个的尖峰必须通过一个称为“尖峰分选”的过程被分配到它们的起源细胞。尖峰排序是一个无监督的问题,因为通常没有真实的信息可用。在这里,我们专注于提高峰值排序性能,特别是在高同步活动或所谓的“爆发”期间。爆发需要在峰值形状和振幅的系统变化,仍然是当前的峰值排序方案的挑战。我们使用高密度微电极阵列(hd - mea)的真实模拟爆炸记录,并提出了一种基于模板匹配的全自动算法,重点是恢复爆炸期间缺失的尖峰。为了比较和测试应用我们的方法后的峰值排序性能,我们使用了模拟录音的真值信息。我们表明,我们的方法可以有效地提高爆炸时的尖峰分类性能。有必要用实验记录进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modulated template-matching approach to improve spike sorting of bursting neurons.

In extracellular neural electrophysiology, individual spikes have to be assigned to their cell of origin in a procedure called "spike sorting". Spike sorting is an unsupervised problem, since no ground-truth information is generally available. Here, we focus on improving spike sorting performance, particularly during periods of high synchronous activity or so-called "bursting". Bursting entails systematic changes in spike shapes and amplitudes and remains a challenge for current spike sorting schemes. We use realistic simulated bursting recordings of high-density micro-electrode arrays (HD-MEAs) and we present a fully automated algorithm based on template matching with a focus on recovering missed spikes during bursts. To compare and benchmark spike-sorting performance after applying our method, we used ground-truth information of simulated recordings. We show that our approach can be effective in improving spike sorting performance during bursting. Further validation with experimental recordings is necessary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microscale 3-D Capacitance Tomography with a CMOS Sensor Array. FlowMorph: Morphological Segmentation of Ultrasound-Monitored Spinal Cord Microcirculation. Programmable Electrochemical Stimulation on a Large-Scale CMOS Microelectrode Array. Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface. Estimating Intrinsic Manifold Dimensionality to Classify Task-Related Information in Human and Non-Human Primate Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1