Alec J. Wozney, Macey A. Smith, Mobeen Abdrabbo, Cole M. Birch, Kelsey A. Cicigoi, Connor C. Dolan, Audrey E. L. Gerzema, Abby Hansen, Ethan J. Henseler, Ben LaBerge, Caterra M. Leavens, Christine N. Le, Allison C. Lindquist, Rikaela K. Ludwig, Maggie G. O’Reilly, Jacob H. Reynolds, Brandon A. Sherman, Hunter W. Sillman, Michael A. Smith, Marissa J. Snortheim, Levi M. Svaren, Emily C. Vanderpas, Aidan Voon, Miles J. Wackett, Moriah M. Weiss, Sanchita Hati, Sudeep Bhattacharyya
{"title":"通过分子动力学模拟揭示更强的SARS-CoV-2变体的进化","authors":"Alec J. Wozney, Macey A. Smith, Mobeen Abdrabbo, Cole M. Birch, Kelsey A. Cicigoi, Connor C. Dolan, Audrey E. L. Gerzema, Abby Hansen, Ethan J. Henseler, Ben LaBerge, Caterra M. Leavens, Christine N. Le, Allison C. Lindquist, Rikaela K. Ludwig, Maggie G. O’Reilly, Jacob H. Reynolds, Brandon A. Sherman, Hunter W. Sillman, Michael A. Smith, Marissa J. Snortheim, Levi M. Svaren, Emily C. Vanderpas, Aidan Voon, Miles J. Wackett, Moriah M. Weiss, Sanchita Hati, Sudeep Bhattacharyya","doi":"10.1007/s10930-022-10065-6","DOIUrl":null,"url":null,"abstract":"<div><p>Using molecular dynamics simulations, the protein–protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein–protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein–protein complexes were studied. The protein–protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.\n</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"41 4-5","pages":"444 - 456"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10930-022-10065-6.pdf","citationCount":"1","resultStr":"{\"title\":\"Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations\",\"authors\":\"Alec J. Wozney, Macey A. Smith, Mobeen Abdrabbo, Cole M. Birch, Kelsey A. Cicigoi, Connor C. Dolan, Audrey E. L. Gerzema, Abby Hansen, Ethan J. Henseler, Ben LaBerge, Caterra M. Leavens, Christine N. Le, Allison C. Lindquist, Rikaela K. Ludwig, Maggie G. O’Reilly, Jacob H. Reynolds, Brandon A. Sherman, Hunter W. Sillman, Michael A. Smith, Marissa J. Snortheim, Levi M. Svaren, Emily C. Vanderpas, Aidan Voon, Miles J. Wackett, Moriah M. Weiss, Sanchita Hati, Sudeep Bhattacharyya\",\"doi\":\"10.1007/s10930-022-10065-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using molecular dynamics simulations, the protein–protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein–protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein–protein complexes were studied. The protein–protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.\\n</p></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":\"41 4-5\",\"pages\":\"444 - 456\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10930-022-10065-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-022-10065-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-022-10065-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
采用分子动力学模拟方法,研究了严重急性呼吸综合征冠状病毒2型野生型和7个突变体刺突蛋白受体结合结构域与人血管紧张素转换酶2肽酶结构域的蛋白-蛋白相互作用。这些变体是alpha, beta, gamma, delta, eta, kappa和omicron。利用100 ns模拟数据,确定了蛋白-蛋白界面残基相互作用网络。此外,还研究了突变对模拟蛋白质-蛋白质复合物的基本蛋白质动力学、骨干柔韧性和相互作用能的影响。从残基间相互作用距离和成对相互作用能的分析可以看出,野生型、delta和omicron变体的蛋白质-蛋白质界面包含几个更强的相互作用,而α、β、γ、eta和kappa变体则表现出相反的情况。研究表明,在中间和右侧接触区域的两个不同的残基网络在蛋白质伴侣之间形成了更强的结合亲和力。该研究提供了一个分子水平的见解,了解delta和组粒变异如何增强传播性和传染性,最有可能与结合界面上的少数相互作用残基相关联,这可能用于未来的抗体构建和基于结构的抗病毒药物设计。
Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations
Using molecular dynamics simulations, the protein–protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein–protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein–protein complexes were studied. The protein–protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.