{"title":"多孔石墨烯增强纳米复合材料高效电磁干扰屏蔽的多目标优化设计","authors":"Xiaodong Xia, Yang Liu, Yihui Pan, Zheng Zhong","doi":"10.1007/s10999-023-09643-y","DOIUrl":null,"url":null,"abstract":"<div><p>High electromagnetic interference (EMI) shielding but relatively low cost is highly desired due to the severe electromagnetic pollution and cost restriction. However, no existing research can provide the optimal microstructure to these competing goals in nanocomposite foams. The present paper concentrates on the multi-objective optimization of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. First, a two-scale electromagnetic constitutive model of EMI shielding effectiveness (SE) and cost is established through the effective-medium approximation with tunneling and Maxwell–Wagner-Sillars polarization effects. Then, a NSGA-II-based multi-objective optimization is developed for high EMI SE and low cost with the assistance of crowding distance and elite strategy. Compared to the experimental data of graphene/PDMS nanocomposite foam, the effective EMI SE of Pareto-optimal solutions increases by 78% while maintaining the identical cost. On the contrary, the optimal cost decreases by 76% while achieving the same EMI SE. The optimal EMI SE per unit cost is demonstrated to enhance by 405% with the experiment. The significant promotion of Pareto-optimal solutions in EMI shielding performance and efficiency is ascribed to the appropriate choice of microstructural parameters based on the multi-objective optimization. This research provides accurate instructions for the multi-objective optimal design in porous graphene-reinforced nanocomposites.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 3","pages":"669 - 685"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09643-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites\",\"authors\":\"Xiaodong Xia, Yang Liu, Yihui Pan, Zheng Zhong\",\"doi\":\"10.1007/s10999-023-09643-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High electromagnetic interference (EMI) shielding but relatively low cost is highly desired due to the severe electromagnetic pollution and cost restriction. However, no existing research can provide the optimal microstructure to these competing goals in nanocomposite foams. The present paper concentrates on the multi-objective optimization of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. First, a two-scale electromagnetic constitutive model of EMI shielding effectiveness (SE) and cost is established through the effective-medium approximation with tunneling and Maxwell–Wagner-Sillars polarization effects. Then, a NSGA-II-based multi-objective optimization is developed for high EMI SE and low cost with the assistance of crowding distance and elite strategy. Compared to the experimental data of graphene/PDMS nanocomposite foam, the effective EMI SE of Pareto-optimal solutions increases by 78% while maintaining the identical cost. On the contrary, the optimal cost decreases by 76% while achieving the same EMI SE. The optimal EMI SE per unit cost is demonstrated to enhance by 405% with the experiment. The significant promotion of Pareto-optimal solutions in EMI shielding performance and efficiency is ascribed to the appropriate choice of microstructural parameters based on the multi-objective optimization. This research provides accurate instructions for the multi-objective optimal design in porous graphene-reinforced nanocomposites.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 3\",\"pages\":\"669 - 685\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10999-023-09643-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09643-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09643-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites
High electromagnetic interference (EMI) shielding but relatively low cost is highly desired due to the severe electromagnetic pollution and cost restriction. However, no existing research can provide the optimal microstructure to these competing goals in nanocomposite foams. The present paper concentrates on the multi-objective optimization of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. First, a two-scale electromagnetic constitutive model of EMI shielding effectiveness (SE) and cost is established through the effective-medium approximation with tunneling and Maxwell–Wagner-Sillars polarization effects. Then, a NSGA-II-based multi-objective optimization is developed for high EMI SE and low cost with the assistance of crowding distance and elite strategy. Compared to the experimental data of graphene/PDMS nanocomposite foam, the effective EMI SE of Pareto-optimal solutions increases by 78% while maintaining the identical cost. On the contrary, the optimal cost decreases by 76% while achieving the same EMI SE. The optimal EMI SE per unit cost is demonstrated to enhance by 405% with the experiment. The significant promotion of Pareto-optimal solutions in EMI shielding performance and efficiency is ascribed to the appropriate choice of microstructural parameters based on the multi-objective optimization. This research provides accurate instructions for the multi-objective optimal design in porous graphene-reinforced nanocomposites.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.