天然保温材料的热降解、吸湿特性及抗菌性能研究

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2021-02-01 DOI:10.1007/s40243-021-00188-8
Ayaz Ahmed, Adnan Qayoum
{"title":"天然保温材料的热降解、吸湿特性及抗菌性能研究","authors":"Ayaz Ahmed,&nbsp;Adnan Qayoum","doi":"10.1007/s40243-021-00188-8","DOIUrl":null,"url":null,"abstract":"<p>The demand for natural insulation materials is increasing with special attention to the use of such materials for exploiting renewable energy. Natural insulation materials tremendously influence the sustainability development and energy efficiency enhancement in the buildings. Natural fibers from animal’s origin absorb great amount of moisture on exposed to the environment which significantly affects the performance and thermal insulation properties. The thermal degradation of such material strongly influences the accidental burning characteristics, an important selection criteria for building materials. In the present study, three different kind of natural insulation materials namely sheep wool, goat wool and horse mane have been characterized in terms of moisture absorption, thermal degradation and morphology using thermogravimetric analysis (TGA), differential scanning calorimetry techniques, and scanning electron microscopy, respectively. In addition, antibacterial behavioral study has been also carried out for untreated raw wool and treated wool (copper nitrate). These properties are vital for a holistic evaluation of the insulation material. Moisture absorption results indicate that the sheep wool and goat wool absorb less moisture content as compared to horse mane. Unlike this horse mane shows great stability than goat wool and sheep wool in the temperature range not exceeding 470?°C. TGA data indicate 50% mass loss (<i>T</i><sub>50%</sub>) at 306?°C, 322?°C and 318?°C for sheep wool, goat wool and horse mane, respectively. In addition the tests show that the content of fire retardant elements like nitrogen and sulphur is more in horse mane as compared to sheep wool and goat wool. The treated wool samples showed excellent antibacterial properties as compared to untreated wool samples.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00188-8","citationCount":"7","resultStr":"{\"title\":\"Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials\",\"authors\":\"Ayaz Ahmed,&nbsp;Adnan Qayoum\",\"doi\":\"10.1007/s40243-021-00188-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The demand for natural insulation materials is increasing with special attention to the use of such materials for exploiting renewable energy. Natural insulation materials tremendously influence the sustainability development and energy efficiency enhancement in the buildings. Natural fibers from animal’s origin absorb great amount of moisture on exposed to the environment which significantly affects the performance and thermal insulation properties. The thermal degradation of such material strongly influences the accidental burning characteristics, an important selection criteria for building materials. In the present study, three different kind of natural insulation materials namely sheep wool, goat wool and horse mane have been characterized in terms of moisture absorption, thermal degradation and morphology using thermogravimetric analysis (TGA), differential scanning calorimetry techniques, and scanning electron microscopy, respectively. In addition, antibacterial behavioral study has been also carried out for untreated raw wool and treated wool (copper nitrate). These properties are vital for a holistic evaluation of the insulation material. Moisture absorption results indicate that the sheep wool and goat wool absorb less moisture content as compared to horse mane. Unlike this horse mane shows great stability than goat wool and sheep wool in the temperature range not exceeding 470?°C. TGA data indicate 50% mass loss (<i>T</i><sub>50%</sub>) at 306?°C, 322?°C and 318?°C for sheep wool, goat wool and horse mane, respectively. In addition the tests show that the content of fire retardant elements like nitrogen and sulphur is more in horse mane as compared to sheep wool and goat wool. The treated wool samples showed excellent antibacterial properties as compared to untreated wool samples.</p>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40243-021-00188-8\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-021-00188-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-021-00188-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

对天然绝缘材料的需求正在增加,特别注意利用这种材料开发可再生能源。天然保温材料对建筑的可持续发展和节能效果的提高有着巨大的影响。来源于动物的天然纤维在暴露于环境中会吸收大量的水分,这对其性能和保温性能有很大的影响。这种材料的热降解严重影响了偶然燃烧特性,这是建筑材料的重要选择标准。本文利用热重分析(TGA)、差示扫描量热法和扫描电镜技术,对绵羊羊毛、山羊毛和马鬃三种不同的天然保温材料的吸湿性、热降解性和形貌进行了表征。此外,还对未经处理的毛料和处理后的毛料(硝酸铜)进行了抗菌行为研究。这些特性对于绝缘材料的整体评价至关重要。吸湿结果表明,与马鬃相比,绵羊羊毛和山羊毛的吸湿率较低。与此不同,马鬃在不超过470°C的温度范围内表现出比山羊毛和绵羊羊毛更大的稳定性。TGA数据显示306℃时质量损失50% (T50%)。°C, 322 ?°C和318?绵羊羊毛、山羊毛和马鬃的温度分别为°C。此外,试验表明,马鬃中氮、硫等阻燃元素的含量高于绵羊羊毛和山羊毛。与未经处理的羊毛样品相比,处理后的羊毛样品具有优异的抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials

The demand for natural insulation materials is increasing with special attention to the use of such materials for exploiting renewable energy. Natural insulation materials tremendously influence the sustainability development and energy efficiency enhancement in the buildings. Natural fibers from animal’s origin absorb great amount of moisture on exposed to the environment which significantly affects the performance and thermal insulation properties. The thermal degradation of such material strongly influences the accidental burning characteristics, an important selection criteria for building materials. In the present study, three different kind of natural insulation materials namely sheep wool, goat wool and horse mane have been characterized in terms of moisture absorption, thermal degradation and morphology using thermogravimetric analysis (TGA), differential scanning calorimetry techniques, and scanning electron microscopy, respectively. In addition, antibacterial behavioral study has been also carried out for untreated raw wool and treated wool (copper nitrate). These properties are vital for a holistic evaluation of the insulation material. Moisture absorption results indicate that the sheep wool and goat wool absorb less moisture content as compared to horse mane. Unlike this horse mane shows great stability than goat wool and sheep wool in the temperature range not exceeding 470?°C. TGA data indicate 50% mass loss (T50%) at 306?°C, 322?°C and 318?°C for sheep wool, goat wool and horse mane, respectively. In addition the tests show that the content of fire retardant elements like nitrogen and sulphur is more in horse mane as compared to sheep wool and goat wool. The treated wool samples showed excellent antibacterial properties as compared to untreated wool samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Novel hole transport materials of pyrogallol-sulfonamide hybrid: synthesis, optical, electrochemical properties and molecular modelling for perovskite solar cells Investigation of semiconductor to metallic transitions of perovskite CsGeCl3 material through induced pressure: a DFT calculation for photovoltaic and optoelectronic applications Mg(BH4)2-CH3NH2BH3@MgO solid state electrolyte for magnesium batteries Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization Sustainable construction: the use of cork material in the building industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1