细胞衰老与心血管疾病:移动到“心脏”的问题。

IF 29.9 1区 医学 Q1 PHYSIOLOGY Physiological reviews Pub Date : 2023-01-01 Epub Date: 2022-09-01 DOI:10.1152/physrev.00007.2022
Konstantinos Evangelou, Panagiotis V S Vasileiou, Angelos Papaspyropoulos, Orsalia Hazapis, Russell Petty, Marco Demaria, Vassilis G Gorgoulis
{"title":"细胞衰老与心血管疾病:移动到“心脏”的问题。","authors":"Konstantinos Evangelou,&nbsp;Panagiotis V S Vasileiou,&nbsp;Angelos Papaspyropoulos,&nbsp;Orsalia Hazapis,&nbsp;Russell Petty,&nbsp;Marco Demaria,&nbsp;Vassilis G Gorgoulis","doi":"10.1152/physrev.00007.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":null,"pages":null},"PeriodicalIF":29.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cellular senescence and cardiovascular diseases: moving to the \\\"heart\\\" of the problem.\",\"authors\":\"Konstantinos Evangelou,&nbsp;Panagiotis V S Vasileiou,&nbsp;Angelos Papaspyropoulos,&nbsp;Orsalia Hazapis,&nbsp;Russell Petty,&nbsp;Marco Demaria,&nbsp;Vassilis G Gorgoulis\",\"doi\":\"10.1152/physrev.00007.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.</p>\",\"PeriodicalId\":20193,\"journal\":{\"name\":\"Physiological reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":29.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physrev.00007.2022\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00007.2022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 13

摘要

心血管疾病是全球死亡的主要原因,对患者的生活质量和残疾造成巨大影响。临床证据显示,在大多数心血管疾病(包括缺血性和非缺血性心肌病)中,细胞衰老与心脏预后恶化之间存在密切联系。细胞衰老的特征是细胞周期停滞,伴随着几种代谢途径的改变,导致形态和功能的改变。衰老细胞的代谢重组通过独特的分泌组导致显著的旁分泌活性,通常对邻近细胞产生有害影响。在这里,我们概述了在心脏背景下参与细胞衰老的标志和关键分子途径,并总结了衰老在大多数心血管疾病中的不同作用。在过去的几年里,人们越来越多地探索在各种病理条件下消除衰老细胞的可能性,从而产生了衰老疗法领域。因此,我们还试图澄清这一领域的现状,重点关注心脏衰老,并讨论实施抗衰老药物作为心脏病治疗选择的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellular senescence and cardiovascular diseases: moving to the "heart" of the problem.

Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
期刊最新文献
Multiscale structure and function of the aortic valve apparatus. Understanding coenzyme Q. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. REDOX SIGNALLING IN THE PANCREAS IN HEALTH AND DISEASE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1