Wenhao Gao , Xiefei Zhu , Lingyun Ding , Biyu Xu , Yang Gao , Yu Cheng , Fan Dai , Bingliang Liu , Zhanfeng Si , Lei Fang , Xueying Guan , Shuijin Zhu , Tianzhen Zhang , Yan Hu
{"title":"“有腺植物和无腺种子”棉花的工程开发","authors":"Wenhao Gao , Xiefei Zhu , Lingyun Ding , Biyu Xu , Yang Gao , Yu Cheng , Fan Dai , Bingliang Liu , Zhanfeng Si , Lei Fang , Xueying Guan , Shuijin Zhu , Tianzhen Zhang , Yan Hu","doi":"10.1016/j.fochms.2022.100130","DOIUrl":null,"url":null,"abstract":"<div><p>After fiber, cottonseed is the second most important by-product of cotton production. However, high concentrations of toxic free gossypol deposited in the glands of the cottonseed greatly hamper its effective usage as food or feed. Here, we developed a cotton line with edible cottonseed by specifically silencing the endogenous expression of <em>GoPGF</em> in the seeds, which led to a glandless phenotype with an ultra-low gossypol content in the seeds and nearly normal gossypol in other parts of the plants. This engineered cotton maintains normal resistance to insect pests, but the gossypol content in the seeds dropped by 98%, and thus, it can be consumed directly as food. The trait of a low gossypol content in the cottonseeds was stable and heritable, while the protein, oil content, and fiber yield or quality were nearly unchanged compared to the transgenic receptor W0. In addition, comparative transcriptome analysis showed that down-regulated genes in the ovules of the glandless cotton were enriched in terpenoid biosynthesis, indicating the underlying relationship between gland formation and gossypol biosynthesis. These results pave the way for the comprehensive utilization of cotton as a fiber, oil, and feed crop in the future.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"5 ","pages":"Article 100130"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/24/ae/main.PMC9386459.pdf","citationCount":"8","resultStr":"{\"title\":\"Development of the engineered “glanded plant and glandless seed” cotton\",\"authors\":\"Wenhao Gao , Xiefei Zhu , Lingyun Ding , Biyu Xu , Yang Gao , Yu Cheng , Fan Dai , Bingliang Liu , Zhanfeng Si , Lei Fang , Xueying Guan , Shuijin Zhu , Tianzhen Zhang , Yan Hu\",\"doi\":\"10.1016/j.fochms.2022.100130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>After fiber, cottonseed is the second most important by-product of cotton production. However, high concentrations of toxic free gossypol deposited in the glands of the cottonseed greatly hamper its effective usage as food or feed. Here, we developed a cotton line with edible cottonseed by specifically silencing the endogenous expression of <em>GoPGF</em> in the seeds, which led to a glandless phenotype with an ultra-low gossypol content in the seeds and nearly normal gossypol in other parts of the plants. This engineered cotton maintains normal resistance to insect pests, but the gossypol content in the seeds dropped by 98%, and thus, it can be consumed directly as food. The trait of a low gossypol content in the cottonseeds was stable and heritable, while the protein, oil content, and fiber yield or quality were nearly unchanged compared to the transgenic receptor W0. In addition, comparative transcriptome analysis showed that down-regulated genes in the ovules of the glandless cotton were enriched in terpenoid biosynthesis, indicating the underlying relationship between gland formation and gossypol biosynthesis. These results pave the way for the comprehensive utilization of cotton as a fiber, oil, and feed crop in the future.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"5 \",\"pages\":\"Article 100130\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/24/ae/main.PMC9386459.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566222000582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development of the engineered “glanded plant and glandless seed” cotton
After fiber, cottonseed is the second most important by-product of cotton production. However, high concentrations of toxic free gossypol deposited in the glands of the cottonseed greatly hamper its effective usage as food or feed. Here, we developed a cotton line with edible cottonseed by specifically silencing the endogenous expression of GoPGF in the seeds, which led to a glandless phenotype with an ultra-low gossypol content in the seeds and nearly normal gossypol in other parts of the plants. This engineered cotton maintains normal resistance to insect pests, but the gossypol content in the seeds dropped by 98%, and thus, it can be consumed directly as food. The trait of a low gossypol content in the cottonseeds was stable and heritable, while the protein, oil content, and fiber yield or quality were nearly unchanged compared to the transgenic receptor W0. In addition, comparative transcriptome analysis showed that down-regulated genes in the ovules of the glandless cotton were enriched in terpenoid biosynthesis, indicating the underlying relationship between gland formation and gossypol biosynthesis. These results pave the way for the comprehensive utilization of cotton as a fiber, oil, and feed crop in the future.