{"title":"明胶基水凝胶的速率依赖性断裂行为","authors":"Si Chen, Krishnaswamy Ravi-Chandar","doi":"10.1007/s10704-023-00738-3","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogels exhibit rate-dependent fracture behavior, due to solvent diffusion, rearrangement of the polymer network, and other mechanisms. To explore rate-dependent fracture behavior, a series of creep fracture experiments were performed on gelatin-based hydrogels under different controlled humidity, and load conditions. The crack tip boundary condition was controlled to non-immersed and fully water-saturated conditions. Additionally, full-field measurements of the displacement field were performed with digital image correlation. From these experiments, we show that humidity influences the crack initiation time but not the growing crack speed, and that water on the crack tip will significantly influence the fracture properties of the failure zone. Schapery’s viscoelastic J-like integral was adopted for analysis of the experimental measurement to distinguish bulk viscoelastic dissipation from the fracture process zone dissipation. We show that viscoelastic J-like integral is path-independent and can serve as a characterizing parameter for quasistatic crack growth, which provides a way to predict crack growth speed in the simulations.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"243 2","pages":"185 - 202"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate-dependent fracture behavior of gelatin-based hydrogels\",\"authors\":\"Si Chen, Krishnaswamy Ravi-Chandar\",\"doi\":\"10.1007/s10704-023-00738-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogels exhibit rate-dependent fracture behavior, due to solvent diffusion, rearrangement of the polymer network, and other mechanisms. To explore rate-dependent fracture behavior, a series of creep fracture experiments were performed on gelatin-based hydrogels under different controlled humidity, and load conditions. The crack tip boundary condition was controlled to non-immersed and fully water-saturated conditions. Additionally, full-field measurements of the displacement field were performed with digital image correlation. From these experiments, we show that humidity influences the crack initiation time but not the growing crack speed, and that water on the crack tip will significantly influence the fracture properties of the failure zone. Schapery’s viscoelastic J-like integral was adopted for analysis of the experimental measurement to distinguish bulk viscoelastic dissipation from the fracture process zone dissipation. We show that viscoelastic J-like integral is path-independent and can serve as a characterizing parameter for quasistatic crack growth, which provides a way to predict crack growth speed in the simulations.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"243 2\",\"pages\":\"185 - 202\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00738-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00738-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rate-dependent fracture behavior of gelatin-based hydrogels
Hydrogels exhibit rate-dependent fracture behavior, due to solvent diffusion, rearrangement of the polymer network, and other mechanisms. To explore rate-dependent fracture behavior, a series of creep fracture experiments were performed on gelatin-based hydrogels under different controlled humidity, and load conditions. The crack tip boundary condition was controlled to non-immersed and fully water-saturated conditions. Additionally, full-field measurements of the displacement field were performed with digital image correlation. From these experiments, we show that humidity influences the crack initiation time but not the growing crack speed, and that water on the crack tip will significantly influence the fracture properties of the failure zone. Schapery’s viscoelastic J-like integral was adopted for analysis of the experimental measurement to distinguish bulk viscoelastic dissipation from the fracture process zone dissipation. We show that viscoelastic J-like integral is path-independent and can serve as a characterizing parameter for quasistatic crack growth, which provides a way to predict crack growth speed in the simulations.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.