{"title":"钢筋混凝土中腐蚀和机械载荷引起的断裂建模","authors":"J. Alfaiate, L. J. Sluys, A. Costa","doi":"10.1007/s10704-023-00733-8","DOIUrl":null,"url":null,"abstract":"<div><p>Corrosion in reinforced concrete is an important feature which can lead to increased deformation and cracking, as well as to premature failure. In the present work, macro-mechanical modelling of corrosion is performed, namely the degradation of bond–slip between concrete and steel. A mixed-mode damage model is adopted, in which the interaction between the bond–slip law and the stress acting in the neighbourhood of the concrete–steel bar interface is taken into account. Bond–slip degradation is modelled using an evolutionary bond–slip relationship, which depends on the level of corrosion. Different relevant loading cases are studied. Special attention is given to the evolution of corrosion in time, under constant load. This is done by adopting a Total Iterative Approach, in which the structure is reevaluated each time step, upon damage increase due to corrosion. Pullout tests are presented to illustrate the performance of the model. Bending tests are also performed to evaluate the influence of corrosion at structural level.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"243 2","pages":"143 - 168"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-023-00733-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling fracture due to corrosion and mechanical loading in reinforced concrete\",\"authors\":\"J. Alfaiate, L. J. Sluys, A. Costa\",\"doi\":\"10.1007/s10704-023-00733-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Corrosion in reinforced concrete is an important feature which can lead to increased deformation and cracking, as well as to premature failure. In the present work, macro-mechanical modelling of corrosion is performed, namely the degradation of bond–slip between concrete and steel. A mixed-mode damage model is adopted, in which the interaction between the bond–slip law and the stress acting in the neighbourhood of the concrete–steel bar interface is taken into account. Bond–slip degradation is modelled using an evolutionary bond–slip relationship, which depends on the level of corrosion. Different relevant loading cases are studied. Special attention is given to the evolution of corrosion in time, under constant load. This is done by adopting a Total Iterative Approach, in which the structure is reevaluated each time step, upon damage increase due to corrosion. Pullout tests are presented to illustrate the performance of the model. Bending tests are also performed to evaluate the influence of corrosion at structural level.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"243 2\",\"pages\":\"143 - 168\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10704-023-00733-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00733-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00733-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modelling fracture due to corrosion and mechanical loading in reinforced concrete
Corrosion in reinforced concrete is an important feature which can lead to increased deformation and cracking, as well as to premature failure. In the present work, macro-mechanical modelling of corrosion is performed, namely the degradation of bond–slip between concrete and steel. A mixed-mode damage model is adopted, in which the interaction between the bond–slip law and the stress acting in the neighbourhood of the concrete–steel bar interface is taken into account. Bond–slip degradation is modelled using an evolutionary bond–slip relationship, which depends on the level of corrosion. Different relevant loading cases are studied. Special attention is given to the evolution of corrosion in time, under constant load. This is done by adopting a Total Iterative Approach, in which the structure is reevaluated each time step, upon damage increase due to corrosion. Pullout tests are presented to illustrate the performance of the model. Bending tests are also performed to evaluate the influence of corrosion at structural level.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.