量化端粒转录物作为改进遗传不稳定性和遗传毒性风险评估的工具。

IF 2.3 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Mutation research. Genetic toxicology and environmental mutagenesis Pub Date : 2023-10-01 DOI:10.1016/j.mrgentox.2023.503690
Hedwig Sutterlüty, Maximilian Bargl, Klaus Holzmann
{"title":"量化端粒转录物作为改进遗传不稳定性和遗传毒性风险评估的工具。","authors":"Hedwig Sutterlüty,&nbsp;Maximilian Bargl,&nbsp;Klaus Holzmann","doi":"10.1016/j.mrgentox.2023.503690","DOIUrl":null,"url":null,"abstract":"<div><p>Telomere repeat-containing RNAs (TERRA) are transcribed from telomeres as long non-coding RNAs and are part of the telomere structure with protective function. The genetic stability of cells requires telomeric repeats at the ends of chromosomes. Maintenance of telomere length (TL) is essential for proliferative capacity and chromosomal integrity. In contrast, telomere shortening is a recognized risk factor for carcinogenesis and a biomarker of aging due to the cumulative effects of environmental exposures and life experiences such as trauma or stress. In this context, telomere repeats are lost due to cell proliferation, but are also susceptible to stress factors including reactive oxygen species (ROS) inducing oxidative base damage. Quantitative PCR (qPCR) of genomic DNA is an established method to analyze TL as a tool to detect genotoxic events. That same qPCR method can be applied to RNA converted into cDNA to quantify TERRA as a useful tool to perform high-throughput screenings. This short review summarizes relevant qPCR studies using both TL and TERRA quantification, provides an overall view of the molecular mechanisms of telomere protection against ROS by TERRA, and summarizes the presented studies comparing the results at DNA and RNA levels, which indicate that fluctuations at transcript level might reflect a short-term response. Therefore, we conclude that performing both of these measurements together will improve genotoxicity studies.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"891 ","pages":"Article 503690"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying telomere transcripts as tool to improve risk assessment for genetic instability and genotoxicity\",\"authors\":\"Hedwig Sutterlüty,&nbsp;Maximilian Bargl,&nbsp;Klaus Holzmann\",\"doi\":\"10.1016/j.mrgentox.2023.503690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Telomere repeat-containing RNAs (TERRA) are transcribed from telomeres as long non-coding RNAs and are part of the telomere structure with protective function. The genetic stability of cells requires telomeric repeats at the ends of chromosomes. Maintenance of telomere length (TL) is essential for proliferative capacity and chromosomal integrity. In contrast, telomere shortening is a recognized risk factor for carcinogenesis and a biomarker of aging due to the cumulative effects of environmental exposures and life experiences such as trauma or stress. In this context, telomere repeats are lost due to cell proliferation, but are also susceptible to stress factors including reactive oxygen species (ROS) inducing oxidative base damage. Quantitative PCR (qPCR) of genomic DNA is an established method to analyze TL as a tool to detect genotoxic events. That same qPCR method can be applied to RNA converted into cDNA to quantify TERRA as a useful tool to perform high-throughput screenings. This short review summarizes relevant qPCR studies using both TL and TERRA quantification, provides an overall view of the molecular mechanisms of telomere protection against ROS by TERRA, and summarizes the presented studies comparing the results at DNA and RNA levels, which indicate that fluctuations at transcript level might reflect a short-term response. Therefore, we conclude that performing both of these measurements together will improve genotoxicity studies.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"891 \",\"pages\":\"Article 503690\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571823001080\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571823001080","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

含有端粒重复序列的RNA(TERRA)作为长的非编码RNA从端粒转录而来,是具有保护功能的端粒结构的一部分。细胞的遗传稳定性需要染色体末端的端粒重复。端粒长度(TL)的维持对增殖能力和染色体完整性至关重要。相比之下,由于环境暴露和生活经历(如创伤或压力)的累积影响,端粒缩短是公认的致癌风险因素,也是衰老的生物标志物。在这种情况下,端粒重复序列由于细胞增殖而丢失,但也容易受到应激因素的影响,包括活性氧(ROS)诱导的氧化碱基损伤。基因组DNA的定量PCR(qPCR)是一种已建立的分析TL的方法,作为检测基因毒性事件的工具。同样的qPCR方法可以应用于转化为cDNA的RNA,以量化TERRA,作为进行高通量筛选的有用工具。这篇简短的综述总结了使用TL和TERRA定量的相关qPCR研究,提供了TERRA保护端粒对抗ROS的分子机制的总体观点,并总结了在DNA和RNA水平上比较结果的研究,这些研究表明转录水平的波动可能反映了短期反应。因此,我们得出结论,同时进行这两种测量将改善遗传毒性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying telomere transcripts as tool to improve risk assessment for genetic instability and genotoxicity

Telomere repeat-containing RNAs (TERRA) are transcribed from telomeres as long non-coding RNAs and are part of the telomere structure with protective function. The genetic stability of cells requires telomeric repeats at the ends of chromosomes. Maintenance of telomere length (TL) is essential for proliferative capacity and chromosomal integrity. In contrast, telomere shortening is a recognized risk factor for carcinogenesis and a biomarker of aging due to the cumulative effects of environmental exposures and life experiences such as trauma or stress. In this context, telomere repeats are lost due to cell proliferation, but are also susceptible to stress factors including reactive oxygen species (ROS) inducing oxidative base damage. Quantitative PCR (qPCR) of genomic DNA is an established method to analyze TL as a tool to detect genotoxic events. That same qPCR method can be applied to RNA converted into cDNA to quantify TERRA as a useful tool to perform high-throughput screenings. This short review summarizes relevant qPCR studies using both TL and TERRA quantification, provides an overall view of the molecular mechanisms of telomere protection against ROS by TERRA, and summarizes the presented studies comparing the results at DNA and RNA levels, which indicate that fluctuations at transcript level might reflect a short-term response. Therefore, we conclude that performing both of these measurements together will improve genotoxicity studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
84
审稿时长
105 days
期刊介绍: Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas: New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results). Alternatives to and refinement of the use of animals in genotoxicity testing. Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials. Studies of epigenetic changes in relation to genotoxic effects. The use of structure-activity relationships in predicting genotoxic effects. The isolation and chemical characterization of novel environmental mutagens. The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures. The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing). MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.
期刊最新文献
Introduction Investigation of genetic instability in patients with Diabetes Mellitus type I, II and LADA using buccal micronucleus cytome assay Genotoxicity analysis of a flame retardant, aluminum diethylphosphinate In vitro hepatic 3D cell models and their application in genetic toxicology: A systematic review Disperse Red 1 azo dye: Consequences of low-dose/low-concentration exposures in mice and zebrafish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1