Ana I Salazar-Puerta, Mia Kordowski, Tatiana Z Cuellar-Gaviria, Maria A Rincon-Benavides, Jad Hussein, Dorma Flemister, Gabriel Mayoral-Andrade, Grant Barringer, Elizabeth Guilfoyle, Britani N Blackstone, Binbin Deng, Diana Zepeda-Orozco, David W McComb, Heather Powell, Lakshmi P Dasi, Daniel Gallego-Perez, Natalia Higuita-Castro
{"title":"工程细胞外囊泡治疗瓣膜性心脏病。","authors":"Ana I Salazar-Puerta, Mia Kordowski, Tatiana Z Cuellar-Gaviria, Maria A Rincon-Benavides, Jad Hussein, Dorma Flemister, Gabriel Mayoral-Andrade, Grant Barringer, Elizabeth Guilfoyle, Britani N Blackstone, Binbin Deng, Diana Zepeda-Orozco, David W McComb, Heather Powell, Lakshmi P Dasi, Daniel Gallego-Perez, Natalia Higuita-Castro","doi":"10.1007/s12195-023-00783-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Valvular heart disease represents a significant burden to the healthcare system, with approximately 5 million cases diagnosed annually in the US. Among these cases, calcific aortic stenosis (CAS) stands out as the most prevalent form of valvular heart disease in the aging population. CAS is characterized by the progressive calcification of the aortic valve leaflets, leading to valve stiffening. While aortic valve replacement is the standard of care for CAS patients, the long-term durability of prosthetic devices is poor, calling for innovative strategies to halt or reverse disease progression. Here, we explor the potential use of novel extracellular vesicle (EV)-based nanocarriers for delivering molecular payloads to the affected valve tissue. This approach aims to reduce inflammation and potentially promote resorption of the calcified tissue.</p><p><strong>Methods: </strong>Engineered EVs loaded with the reprogramming myeloid transcription factors, <i>CEBPA</i> and <i>Spi1</i>, known to mediate the transdifferentiation of committed endothelial cells into macrophages. We evaluated the ability of these engineered EVs to deliver DNA and transcripts encoding CEBPA and Spil into calcified aortic valve tissue obtained from patients undergoing valve replacement due to aortic stenosis. We also investigated whether these EVs could induce the transdifferentiation of endothelial cells into macrophage-like cells.</p><p><strong>Results: </strong>Engineered EVs loaded with <i>CEBPA + Spi1</i> were successfully derived from human dermal fibroblasts. Peak EV loading was found to be at 4 h after nanotransfection of donor cells. These <i>CEBPA + Spi1</i> loaded EVs effectively transfected aortic valve cells, resulting in the successful induction of transdifferentiation, both in vitro with endothelial cells and ex vivo with valvular endothelial cells, leading to the development of anti-inflammatory macrophage-like cells.</p><p><strong>Conclusions: </strong>Our findings highlight the potential of engineered EVs as a next generation nanocarrier to target aberrant calcifications on diseased heart valves. This development holds promise as a novel therapy for high-risk patients who may not be suitable candidates for valve replacement surgery.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00783-x.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 4","pages":"309-324"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineered Extracellular Vesicle-Based Therapies for Valvular Heart Disease.\",\"authors\":\"Ana I Salazar-Puerta, Mia Kordowski, Tatiana Z Cuellar-Gaviria, Maria A Rincon-Benavides, Jad Hussein, Dorma Flemister, Gabriel Mayoral-Andrade, Grant Barringer, Elizabeth Guilfoyle, Britani N Blackstone, Binbin Deng, Diana Zepeda-Orozco, David W McComb, Heather Powell, Lakshmi P Dasi, Daniel Gallego-Perez, Natalia Higuita-Castro\",\"doi\":\"10.1007/s12195-023-00783-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Valvular heart disease represents a significant burden to the healthcare system, with approximately 5 million cases diagnosed annually in the US. Among these cases, calcific aortic stenosis (CAS) stands out as the most prevalent form of valvular heart disease in the aging population. CAS is characterized by the progressive calcification of the aortic valve leaflets, leading to valve stiffening. While aortic valve replacement is the standard of care for CAS patients, the long-term durability of prosthetic devices is poor, calling for innovative strategies to halt or reverse disease progression. Here, we explor the potential use of novel extracellular vesicle (EV)-based nanocarriers for delivering molecular payloads to the affected valve tissue. This approach aims to reduce inflammation and potentially promote resorption of the calcified tissue.</p><p><strong>Methods: </strong>Engineered EVs loaded with the reprogramming myeloid transcription factors, <i>CEBPA</i> and <i>Spi1</i>, known to mediate the transdifferentiation of committed endothelial cells into macrophages. We evaluated the ability of these engineered EVs to deliver DNA and transcripts encoding CEBPA and Spil into calcified aortic valve tissue obtained from patients undergoing valve replacement due to aortic stenosis. We also investigated whether these EVs could induce the transdifferentiation of endothelial cells into macrophage-like cells.</p><p><strong>Results: </strong>Engineered EVs loaded with <i>CEBPA + Spi1</i> were successfully derived from human dermal fibroblasts. Peak EV loading was found to be at 4 h after nanotransfection of donor cells. These <i>CEBPA + Spi1</i> loaded EVs effectively transfected aortic valve cells, resulting in the successful induction of transdifferentiation, both in vitro with endothelial cells and ex vivo with valvular endothelial cells, leading to the development of anti-inflammatory macrophage-like cells.</p><p><strong>Conclusions: </strong>Our findings highlight the potential of engineered EVs as a next generation nanocarrier to target aberrant calcifications on diseased heart valves. This development holds promise as a novel therapy for high-risk patients who may not be suitable candidates for valve replacement surgery.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00783-x.</p>\",\"PeriodicalId\":9687,\"journal\":{\"name\":\"Cellular and molecular bioengineering\",\"volume\":\"16 4\",\"pages\":\"309-324\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12195-023-00783-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-023-00783-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Engineered Extracellular Vesicle-Based Therapies for Valvular Heart Disease.
Introduction: Valvular heart disease represents a significant burden to the healthcare system, with approximately 5 million cases diagnosed annually in the US. Among these cases, calcific aortic stenosis (CAS) stands out as the most prevalent form of valvular heart disease in the aging population. CAS is characterized by the progressive calcification of the aortic valve leaflets, leading to valve stiffening. While aortic valve replacement is the standard of care for CAS patients, the long-term durability of prosthetic devices is poor, calling for innovative strategies to halt or reverse disease progression. Here, we explor the potential use of novel extracellular vesicle (EV)-based nanocarriers for delivering molecular payloads to the affected valve tissue. This approach aims to reduce inflammation and potentially promote resorption of the calcified tissue.
Methods: Engineered EVs loaded with the reprogramming myeloid transcription factors, CEBPA and Spi1, known to mediate the transdifferentiation of committed endothelial cells into macrophages. We evaluated the ability of these engineered EVs to deliver DNA and transcripts encoding CEBPA and Spil into calcified aortic valve tissue obtained from patients undergoing valve replacement due to aortic stenosis. We also investigated whether these EVs could induce the transdifferentiation of endothelial cells into macrophage-like cells.
Results: Engineered EVs loaded with CEBPA + Spi1 were successfully derived from human dermal fibroblasts. Peak EV loading was found to be at 4 h after nanotransfection of donor cells. These CEBPA + Spi1 loaded EVs effectively transfected aortic valve cells, resulting in the successful induction of transdifferentiation, both in vitro with endothelial cells and ex vivo with valvular endothelial cells, leading to the development of anti-inflammatory macrophage-like cells.
Conclusions: Our findings highlight the potential of engineered EVs as a next generation nanocarrier to target aberrant calcifications on diseased heart valves. This development holds promise as a novel therapy for high-risk patients who may not be suitable candidates for valve replacement surgery.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-023-00783-x.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.