基于SHAP和硬投票集成方法的语音信号帕金森病诊断。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-10-01 Epub Date: 2023-09-28 DOI:10.1080/10255842.2023.2263125
Paria Ghaheri, Hamid Nasiri, Ahmadreza Shateri, Arman Homafar
{"title":"基于SHAP和硬投票集成方法的语音信号帕金森病诊断。","authors":"Paria Ghaheri, Hamid Nasiri, Ahmadreza Shateri, Arman Homafar","doi":"10.1080/10255842.2023.2263125","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's. The significant number of individuals afflicted with this illness makes it essential to develop a method to diagnose the conditions in their early phases. PD is typically identified from motor symptoms or via other Neuroimaging techniques. Expensive, time-consuming, and unavailable to the general public, these methods are not very accurate. Another issue to be addressed is the black-box nature of machine learning methods that needs interpretation. These issues encourage us to develop a novel technique using Shapley additive explanations (SHAP) and Hard Voting Ensemble Method based on voice signals to diagnose PD more accurately. Another purpose of this study is to interpret the output of the model and determine the most important features in diagnosing PD. The present article uses Pearson Correlation Coefficients to understand the relationship between input features and the output. Input features with high correlation are selected and then classified by the Extreme Gradient Boosting, Light Gradient Boosting Machine, Gradient Boosting, and Bagging. Moreover, the weights in Hard Voting Ensemble Method are determined based on the performance of the mentioned classifiers. At the final stage, it uses SHAP to determine the most important features in PD diagnosis. The effectiveness of the proposed method is validated using 'Parkinson Dataset with Replicated Acoustic Features' from the UCI machine learning repository. It has achieved an accuracy of 85.42%. The findings demonstrate that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson's cases.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Parkinson's disease based on voice signals using SHAP and hard voting ensemble method.\",\"authors\":\"Paria Ghaheri, Hamid Nasiri, Ahmadreza Shateri, Arman Homafar\",\"doi\":\"10.1080/10255842.2023.2263125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's. The significant number of individuals afflicted with this illness makes it essential to develop a method to diagnose the conditions in their early phases. PD is typically identified from motor symptoms or via other Neuroimaging techniques. Expensive, time-consuming, and unavailable to the general public, these methods are not very accurate. Another issue to be addressed is the black-box nature of machine learning methods that needs interpretation. These issues encourage us to develop a novel technique using Shapley additive explanations (SHAP) and Hard Voting Ensemble Method based on voice signals to diagnose PD more accurately. Another purpose of this study is to interpret the output of the model and determine the most important features in diagnosing PD. The present article uses Pearson Correlation Coefficients to understand the relationship between input features and the output. Input features with high correlation are selected and then classified by the Extreme Gradient Boosting, Light Gradient Boosting Machine, Gradient Boosting, and Bagging. Moreover, the weights in Hard Voting Ensemble Method are determined based on the performance of the mentioned classifiers. At the final stage, it uses SHAP to determine the most important features in PD diagnosis. The effectiveness of the proposed method is validated using 'Parkinson Dataset with Replicated Acoustic Features' from the UCI machine learning repository. It has achieved an accuracy of 85.42%. The findings demonstrate that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson's cases.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2263125\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2263125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是继阿尔茨海默氏症之后第二常见的进行性神经疾病。患有这种疾病的人数众多,因此有必要开发一种在早期诊断疾病的方法。帕金森病通常通过运动症状或其他神经成像技术来识别。这些方法昂贵、耗时,而且公众无法获得,因此不太准确。另一个需要解决的问题是需要解释的机器学习方法的黑匣子性质。这些问题鼓励我们开发一种新的技术,使用Shapley加性解释(SHAP)和基于语音信号的硬投票集成方法来更准确地诊断PD。本研究的另一个目的是解释模型的输出,并确定诊断PD中最重要的特征。本文使用Pearson相关系数来理解输入特征和输出之间的关系。选择具有高相关性的输入特征,然后通过极端梯度增强、轻梯度增强机、梯度增强和Bagging进行分类。此外,硬投票集成方法中的权重是根据上述分类器的性能来确定的。在最后阶段,它使用SHAP来确定PD诊断中最重要的特征。使用UCI机器学习库中的“具有复制声学特征的帕金森数据集”验证了所提出方法的有效性。该方法的准确率为85.42%。研究结果表明,所提出的方法优于最先进的方法,可以帮助医生诊断帕金森氏症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnosis of Parkinson's disease based on voice signals using SHAP and hard voting ensemble method.

Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's. The significant number of individuals afflicted with this illness makes it essential to develop a method to diagnose the conditions in their early phases. PD is typically identified from motor symptoms or via other Neuroimaging techniques. Expensive, time-consuming, and unavailable to the general public, these methods are not very accurate. Another issue to be addressed is the black-box nature of machine learning methods that needs interpretation. These issues encourage us to develop a novel technique using Shapley additive explanations (SHAP) and Hard Voting Ensemble Method based on voice signals to diagnose PD more accurately. Another purpose of this study is to interpret the output of the model and determine the most important features in diagnosing PD. The present article uses Pearson Correlation Coefficients to understand the relationship between input features and the output. Input features with high correlation are selected and then classified by the Extreme Gradient Boosting, Light Gradient Boosting Machine, Gradient Boosting, and Bagging. Moreover, the weights in Hard Voting Ensemble Method are determined based on the performance of the mentioned classifiers. At the final stage, it uses SHAP to determine the most important features in PD diagnosis. The effectiveness of the proposed method is validated using 'Parkinson Dataset with Replicated Acoustic Features' from the UCI machine learning repository. It has achieved an accuracy of 85.42%. The findings demonstrate that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson's cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1