离心式体外血泵叶轮轴向位置对血流动力学影响的数值研究。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-10-01 Epub Date: 2023-09-19 DOI:10.1080/10255842.2023.2256946
Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu
{"title":"离心式体外血泵叶轮轴向位置对血流动力学影响的数值研究。","authors":"Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu","doi":"10.1080/10255842.2023.2256946","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions <i>via</i> numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.\",\"authors\":\"Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu\",\"doi\":\"10.1080/10255842.2023.2256946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions <i>via</i> numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2256946\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2256946","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

体外离心式血泵用于治疗心源性休克。由于不平衡的激励或初始组件配置,叶轮轴向位置的变化有可能影响血泵的性能。本研究通过数值模拟比较了不同叶轮轴向位置的流体动力学和溶血结果。结果表明,血泵的压差随着叶轮轴向位置的增加而减小,在流量为2 L/分钟。在叶轮靠近顶部泵壳的轴向运动下,平均壁剪切应力和标量剪切应力分别达到最大值(64.2和29.1 Pa)。在叶轮中心孔中的停留时间和底部间隙延长至0.5 s通过增加叶轮轴向位置。与基线血泵相比,当叶轮轴向位置为2.5和4.0时,溶血指数分别增加了12.3%和24.3% mm。作为一种新颖性,研究结果表明,当叶轮靠近泵壳时,叶轮的轴向位置会对溶血性能产生不利影响。因此,在离心式血泵的开发过程中,必须确定叶轮的最佳轴向位置,以确保血液动力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.

Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions via numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1