单细胞多组学方法在园艺研究中的应用。

IF 10.6 Q1 HORTICULTURE Molecular Horticulture Pub Date : 2023-09-26 DOI:10.1186/s43897-023-00067-y
Jun Zhang, Mayra Ahmad, Hongbo Gao
{"title":"单细胞多组学方法在园艺研究中的应用。","authors":"Jun Zhang, Mayra Ahmad, Hongbo Gao","doi":"10.1186/s43897-023-00067-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"18"},"PeriodicalIF":10.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521458/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of single-cell multi-omics approaches in horticulture research.\",\"authors\":\"Jun Zhang, Mayra Ahmad, Hongbo Gao\",\"doi\":\"10.1186/s43897-023-00067-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"3 1\",\"pages\":\"18\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-023-00067-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-023-00067-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

细胞异质性决定了多细胞生物中各种组织和器官的形态和功能。阐明细胞之间的差异和细胞间调节机制对于深入了解发育过程至关重要。近年来,高通量单细胞转录组测序技术的快速发展影响了植物发育生物学的研究。此外,用于研究表观基因组和代谢组的工具的准确性和敏感性显著提高,从而能够以单细胞分辨率进行多组学分析。在这里,我们总结了目前可用的单细胞多组学方法及其在植物研究中的最新应用,回顾了水果、蔬菜和观赏作物中基于单细胞的研究,并讨论了这些方法在未来园艺研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of single-cell multi-omics approaches in horticulture research.

Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
期刊最新文献
Horizontal transfer of plasmid-like extrachromosomal circular DNAs across graft junctions in Solanaceae. Transcription factor PbrERF114 is involved in the regulation of ethylene synthesis during pear fruit ripening. Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. Ovule initiation in crops characterized by multi-ovulate ovaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1