{"title":"单细胞多组学方法在园艺研究中的应用。","authors":"Jun Zhang, Mayra Ahmad, Hongbo Gao","doi":"10.1186/s43897-023-00067-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"18"},"PeriodicalIF":10.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521458/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of single-cell multi-omics approaches in horticulture research.\",\"authors\":\"Jun Zhang, Mayra Ahmad, Hongbo Gao\",\"doi\":\"10.1186/s43897-023-00067-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"3 1\",\"pages\":\"18\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-023-00067-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-023-00067-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Application of single-cell multi-omics approaches in horticulture research.
Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.