{"title":"植物通过信使核糖核酸替代聚腺苷酸化的转录组可塑性的应激反应。","authors":"Jiawen Zhou, Qingshun Quinn Li","doi":"10.1186/s43897-023-00066-z","DOIUrl":null,"url":null,"abstract":"<p><p>The sessile nature of plants confines their responsiveness to changing environmental conditions. Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors. Alternative polyadenylation (APA) is known for its capacity to augment transcriptome diversity and plasticity, thereby furnishing an additional set of tools for modulating gene expression. APA has also been demonstrated to exhibit intimate associations with plant stress responses. In this study, we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses. These stresses include adverse environmental stresses, and pathogenic attacks, such as cadmium toxicity, high salt, hypoxia, oxidative stress, cold, heat shock, along with bacterial, fungal, and viral infections. We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition. We also proposed a general APA model where transacting factors, including poly(A) factors, epigenetic regulators, RNA m<sup>6</sup>A modification factors, and phase separation proteins, assume pivotal roles in APA related transcriptome plasticity during stress response in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"19"},"PeriodicalIF":10.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536700/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stress responses of plants through transcriptome plasticity by mRNA alternative polyadenylation.\",\"authors\":\"Jiawen Zhou, Qingshun Quinn Li\",\"doi\":\"10.1186/s43897-023-00066-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sessile nature of plants confines their responsiveness to changing environmental conditions. Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors. Alternative polyadenylation (APA) is known for its capacity to augment transcriptome diversity and plasticity, thereby furnishing an additional set of tools for modulating gene expression. APA has also been demonstrated to exhibit intimate associations with plant stress responses. In this study, we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses. These stresses include adverse environmental stresses, and pathogenic attacks, such as cadmium toxicity, high salt, hypoxia, oxidative stress, cold, heat shock, along with bacterial, fungal, and viral infections. We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition. We also proposed a general APA model where transacting factors, including poly(A) factors, epigenetic regulators, RNA m<sup>6</sup>A modification factors, and phase separation proteins, assume pivotal roles in APA related transcriptome plasticity during stress response in plants.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"3 1\",\"pages\":\"19\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536700/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-023-00066-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-023-00066-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Stress responses of plants through transcriptome plasticity by mRNA alternative polyadenylation.
The sessile nature of plants confines their responsiveness to changing environmental conditions. Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors. Alternative polyadenylation (APA) is known for its capacity to augment transcriptome diversity and plasticity, thereby furnishing an additional set of tools for modulating gene expression. APA has also been demonstrated to exhibit intimate associations with plant stress responses. In this study, we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses. These stresses include adverse environmental stresses, and pathogenic attacks, such as cadmium toxicity, high salt, hypoxia, oxidative stress, cold, heat shock, along with bacterial, fungal, and viral infections. We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition. We also proposed a general APA model where transacting factors, including poly(A) factors, epigenetic regulators, RNA m6A modification factors, and phase separation proteins, assume pivotal roles in APA related transcriptome plasticity during stress response in plants.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.