{"title":"基因、生活方式和噪声峰度对噪声性听力损失的影响。","authors":"Xiaoyu Yin, Zheng Li, Tianyu Zhao, Lei Yang","doi":"10.4103/nah.nah_65_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the association of lifestyles, caspase gene (CASP), and noise kurtosis with noise-induced hearing loss (NIHL).</p><p><strong>Design: </strong>Three hundred seven NIHL individuals and 307 matched controls from factories in Chinese factories participated in this case-control study. Age, sex, noise exposure, exfoliated oral mucosa cells, and lifestyles of participants were gathered by the authors. The single nucleotide polymorphisms (SNPs) were genotyped using the Kompetitive Allele Specific polymerase chain reaction (KASP) method.</p><p><strong>Results: </strong>The risk of NIHL was higher for people who worked in the complex noise environment than for people exposed to steady noise environment (adjusted: OR = 1.806, P = 0.002). Smoking and regular earphone use increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038). The GG genotype of the recessive model and G allele in rs1049216, together with the TT genotype of the recessive model in rs6948 decreased the NIHL risk (adjusted: OR = 0.659, P = 0.017). Oppositely, the AA genotype of additive model in rs12415607 had a higher NIHL risk (adjusted: OR = 1.804, P = 0.024). In the additive models, there was a positive interaction between noise kurtosis and CASP3 polymorphisms (RERI = 1.294, P = 0.013; RERI = 1.198, P = 0.031).</p><p><strong>Conclusions: </strong>Noise kurtosis, three SNPs (rs1049216, rs6948, and rs12415607), smoking and earphone use were found to be related to NIHL, and there was a positive interaction between noise kurtosis and CASP3. Results from this study can be used to prevent and detect NIHL and for genetic testing.</p>","PeriodicalId":19195,"journal":{"name":"Noise & Health","volume":"25 118","pages":"143-157"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747805/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Genes, Lifestyles, and Noise Kurtosis on Noise-Induced Hearing Loss.\",\"authors\":\"Xiaoyu Yin, Zheng Li, Tianyu Zhao, Lei Yang\",\"doi\":\"10.4103/nah.nah_65_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To explore the association of lifestyles, caspase gene (CASP), and noise kurtosis with noise-induced hearing loss (NIHL).</p><p><strong>Design: </strong>Three hundred seven NIHL individuals and 307 matched controls from factories in Chinese factories participated in this case-control study. Age, sex, noise exposure, exfoliated oral mucosa cells, and lifestyles of participants were gathered by the authors. The single nucleotide polymorphisms (SNPs) were genotyped using the Kompetitive Allele Specific polymerase chain reaction (KASP) method.</p><p><strong>Results: </strong>The risk of NIHL was higher for people who worked in the complex noise environment than for people exposed to steady noise environment (adjusted: OR = 1.806, P = 0.002). Smoking and regular earphone use increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038). The GG genotype of the recessive model and G allele in rs1049216, together with the TT genotype of the recessive model in rs6948 decreased the NIHL risk (adjusted: OR = 0.659, P = 0.017). Oppositely, the AA genotype of additive model in rs12415607 had a higher NIHL risk (adjusted: OR = 1.804, P = 0.024). In the additive models, there was a positive interaction between noise kurtosis and CASP3 polymorphisms (RERI = 1.294, P = 0.013; RERI = 1.198, P = 0.031).</p><p><strong>Conclusions: </strong>Noise kurtosis, three SNPs (rs1049216, rs6948, and rs12415607), smoking and earphone use were found to be related to NIHL, and there was a positive interaction between noise kurtosis and CASP3. Results from this study can be used to prevent and detect NIHL and for genetic testing.</p>\",\"PeriodicalId\":19195,\"journal\":{\"name\":\"Noise & Health\",\"volume\":\"25 118\",\"pages\":\"143-157\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise & Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/nah.nah_65_22\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/nah.nah_65_22","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Effects of Genes, Lifestyles, and Noise Kurtosis on Noise-Induced Hearing Loss.
Objective: To explore the association of lifestyles, caspase gene (CASP), and noise kurtosis with noise-induced hearing loss (NIHL).
Design: Three hundred seven NIHL individuals and 307 matched controls from factories in Chinese factories participated in this case-control study. Age, sex, noise exposure, exfoliated oral mucosa cells, and lifestyles of participants were gathered by the authors. The single nucleotide polymorphisms (SNPs) were genotyped using the Kompetitive Allele Specific polymerase chain reaction (KASP) method.
Results: The risk of NIHL was higher for people who worked in the complex noise environment than for people exposed to steady noise environment (adjusted: OR = 1.806, P = 0.002). Smoking and regular earphone use increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038). The GG genotype of the recessive model and G allele in rs1049216, together with the TT genotype of the recessive model in rs6948 decreased the NIHL risk (adjusted: OR = 0.659, P = 0.017). Oppositely, the AA genotype of additive model in rs12415607 had a higher NIHL risk (adjusted: OR = 1.804, P = 0.024). In the additive models, there was a positive interaction between noise kurtosis and CASP3 polymorphisms (RERI = 1.294, P = 0.013; RERI = 1.198, P = 0.031).
Conclusions: Noise kurtosis, three SNPs (rs1049216, rs6948, and rs12415607), smoking and earphone use were found to be related to NIHL, and there was a positive interaction between noise kurtosis and CASP3. Results from this study can be used to prevent and detect NIHL and for genetic testing.
Noise & HealthAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
CiteScore
2.10
自引率
14.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍:
Noise and Health is the only International Journal devoted to research on all aspects of noise and its effects on human health. An inter-disciplinary journal for all professions concerned with auditory and non-auditory effects of occupational, environmental, and leisure noise. It aims to provide a forum for presentation of novel research material on a broad range of topics associated with noise pollution, its control and its detrimental effects on hearing and health. It will cover issues from basic experimental science through clinical evaluation and management, technical aspects of noise reduction systems and solutions to environmental issues relating to social and public health policy.