{"title":"使用刺绣身体压力和接近传感器开发转移护理技能评估系统。","authors":"Hirofumi Kurosaki;Hiromu Shirahata;Junya Kawahara;Yasuhito Kondo;Ken Kondo;Bumsuk Lee;Masato Odagaki","doi":"10.1109/JTEHM.2023.3294062","DOIUrl":null,"url":null,"abstract":"Objective: It is important to improve caregiving skills to help reduce the strain on inexperienced caregivers. Previous studies on quantifying caregiving skills have predominantly relied on expensive equipment, such as motion-capture systems with multiple infrared cameras or acceleration sensors. To overcome the cost and space limitations of existing systems, we developed a simple evaluation system for transfer care skills that uses capacitive sensors composed of conductive embroidery fibers. The proposed system can be developed with a few thousand US dollars. Method: The developed evaluation system was used to compare the seating position and velocity of a care recipient during transfers from a nursing-care bed to a wheelchair between groups of inexperienced and expert caregivers. To validate the proposed system, we compare the motion data measured by our system and the data obtained from a conventional three-dimensional motion-capture system and force plate. Results: We analyze the relationship between changes in the center of pressure (CoP) recorded by the force plate and the center of gravity (CoG) obtained by the developed system. Evidently, the changes in CoP have a relation with the CoG. We show that the actual seating speed (\n<inline-formula> <tex-math>$v_{\\mathrm {z}}) $ </tex-math></inline-formula>\n measured by the motion-capture system is related to the speed coefficient calculated from our sensor output. A significant difference exists in \n<inline-formula> <tex-math>$v_{\\mathrm {z}}$ </tex-math></inline-formula>\n between the inexperienced group and the physical therapists/occupational therapists’ group. Conclusions: The proposed system can effectively estimate a caregiver’s skill level in transferring patients from a bed to a wheelchair in terms of the seating position and velocity.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"460-468"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10177745","citationCount":"0","resultStr":"{\"title\":\"Development of an Evaluation System for Transfer Care Skills Using Embroidered Body Pressure and Proximity Sensor\",\"authors\":\"Hirofumi Kurosaki;Hiromu Shirahata;Junya Kawahara;Yasuhito Kondo;Ken Kondo;Bumsuk Lee;Masato Odagaki\",\"doi\":\"10.1109/JTEHM.2023.3294062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: It is important to improve caregiving skills to help reduce the strain on inexperienced caregivers. Previous studies on quantifying caregiving skills have predominantly relied on expensive equipment, such as motion-capture systems with multiple infrared cameras or acceleration sensors. To overcome the cost and space limitations of existing systems, we developed a simple evaluation system for transfer care skills that uses capacitive sensors composed of conductive embroidery fibers. The proposed system can be developed with a few thousand US dollars. Method: The developed evaluation system was used to compare the seating position and velocity of a care recipient during transfers from a nursing-care bed to a wheelchair between groups of inexperienced and expert caregivers. To validate the proposed system, we compare the motion data measured by our system and the data obtained from a conventional three-dimensional motion-capture system and force plate. Results: We analyze the relationship between changes in the center of pressure (CoP) recorded by the force plate and the center of gravity (CoG) obtained by the developed system. Evidently, the changes in CoP have a relation with the CoG. We show that the actual seating speed (\\n<inline-formula> <tex-math>$v_{\\\\mathrm {z}}) $ </tex-math></inline-formula>\\n measured by the motion-capture system is related to the speed coefficient calculated from our sensor output. A significant difference exists in \\n<inline-formula> <tex-math>$v_{\\\\mathrm {z}}$ </tex-math></inline-formula>\\n between the inexperienced group and the physical therapists/occupational therapists’ group. Conclusions: The proposed system can effectively estimate a caregiver’s skill level in transferring patients from a bed to a wheelchair in terms of the seating position and velocity.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"460-468\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10177745\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10177745/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10177745/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development of an Evaluation System for Transfer Care Skills Using Embroidered Body Pressure and Proximity Sensor
Objective: It is important to improve caregiving skills to help reduce the strain on inexperienced caregivers. Previous studies on quantifying caregiving skills have predominantly relied on expensive equipment, such as motion-capture systems with multiple infrared cameras or acceleration sensors. To overcome the cost and space limitations of existing systems, we developed a simple evaluation system for transfer care skills that uses capacitive sensors composed of conductive embroidery fibers. The proposed system can be developed with a few thousand US dollars. Method: The developed evaluation system was used to compare the seating position and velocity of a care recipient during transfers from a nursing-care bed to a wheelchair between groups of inexperienced and expert caregivers. To validate the proposed system, we compare the motion data measured by our system and the data obtained from a conventional three-dimensional motion-capture system and force plate. Results: We analyze the relationship between changes in the center of pressure (CoP) recorded by the force plate and the center of gravity (CoG) obtained by the developed system. Evidently, the changes in CoP have a relation with the CoG. We show that the actual seating speed (
$v_{\mathrm {z}}) $
measured by the motion-capture system is related to the speed coefficient calculated from our sensor output. A significant difference exists in
$v_{\mathrm {z}}$
between the inexperienced group and the physical therapists/occupational therapists’ group. Conclusions: The proposed system can effectively estimate a caregiver’s skill level in transferring patients from a bed to a wheelchair in terms of the seating position and velocity.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.