{"title":"考虑极化惯性和柔性动力效应的电介质局部梯度理论","authors":"Olha Hrytsyna, Yuriy Tokovyy, Maryan Hrytsyna","doi":"10.1007/s00161-023-01229-5","DOIUrl":null,"url":null,"abstract":"<div><p>A higher-grade theory of non-ferromagnetic thermo-elastic dielectrics which incorporates the local mass displacement, the heat flux gradient, polarization inertia, and flexodynamic effects is developed. The process of local mass displacement is associated with changes in material microstructure. Using the fundamental principles of continuum mechanics, electrodynamics, and non-equilibrium thermodynamics, the gradient-type constitutive equations are derived. Due to accounting for the polarization inertia, the rheological constitutive equation for the polarization vector is obtained. In the balance equation of linear momentum, an additional term with the second time derivative of the polarization vector appears in comparison with the classical theory. This term controls the influence of the dynamic flexoelectric effect on the mechanical motion of dielectric solids. The propagation of a plane harmonic wave is analyzed within the context of the developed theory. It is shown that the theory allows for capturing the experimentally observed phenomenon of high-frequency dispersion of a longitudinal elastic wave. The theory may be useful for modeling coupled processes in nanodielectrics and heterogeneous polarized systems.\n</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"35 6","pages":"2125 - 2144"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-023-01229-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Local gradient theory of dielectrics incorporating polarization inertia and flexodynamic effect\",\"authors\":\"Olha Hrytsyna, Yuriy Tokovyy, Maryan Hrytsyna\",\"doi\":\"10.1007/s00161-023-01229-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A higher-grade theory of non-ferromagnetic thermo-elastic dielectrics which incorporates the local mass displacement, the heat flux gradient, polarization inertia, and flexodynamic effects is developed. The process of local mass displacement is associated with changes in material microstructure. Using the fundamental principles of continuum mechanics, electrodynamics, and non-equilibrium thermodynamics, the gradient-type constitutive equations are derived. Due to accounting for the polarization inertia, the rheological constitutive equation for the polarization vector is obtained. In the balance equation of linear momentum, an additional term with the second time derivative of the polarization vector appears in comparison with the classical theory. This term controls the influence of the dynamic flexoelectric effect on the mechanical motion of dielectric solids. The propagation of a plane harmonic wave is analyzed within the context of the developed theory. It is shown that the theory allows for capturing the experimentally observed phenomenon of high-frequency dispersion of a longitudinal elastic wave. The theory may be useful for modeling coupled processes in nanodielectrics and heterogeneous polarized systems.\\n</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"35 6\",\"pages\":\"2125 - 2144\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-023-01229-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01229-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01229-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Local gradient theory of dielectrics incorporating polarization inertia and flexodynamic effect
A higher-grade theory of non-ferromagnetic thermo-elastic dielectrics which incorporates the local mass displacement, the heat flux gradient, polarization inertia, and flexodynamic effects is developed. The process of local mass displacement is associated with changes in material microstructure. Using the fundamental principles of continuum mechanics, electrodynamics, and non-equilibrium thermodynamics, the gradient-type constitutive equations are derived. Due to accounting for the polarization inertia, the rheological constitutive equation for the polarization vector is obtained. In the balance equation of linear momentum, an additional term with the second time derivative of the polarization vector appears in comparison with the classical theory. This term controls the influence of the dynamic flexoelectric effect on the mechanical motion of dielectric solids. The propagation of a plane harmonic wave is analyzed within the context of the developed theory. It is shown that the theory allows for capturing the experimentally observed phenomenon of high-frequency dispersion of a longitudinal elastic wave. The theory may be useful for modeling coupled processes in nanodielectrics and heterogeneous polarized systems.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.