由均匀化构造的微形态介质发出的广义连续体的层次

IF 1.9 4区 工程技术 Q3 MECHANICS Continuum Mechanics and Thermodynamics Pub Date : 2023-08-08 DOI:10.1007/s00161-023-01239-3
S. E. Alavi, J. F. Ganghoffer, H. Reda, M. Sadighi
{"title":"由均匀化构造的微形态介质发出的广义连续体的层次","authors":"S. E. Alavi,&nbsp;J. F. Ganghoffer,&nbsp;H. Reda,&nbsp;M. Sadighi","doi":"10.1007/s00161-023-01239-3","DOIUrl":null,"url":null,"abstract":"<div><p>The present contribution provides a classification of generalized continua constructed by a micromechanical approach, relying on an extension of the Hill macrohomogeneity condition. The virtual power of equilibrium for a micromorphic effective medium is derived from the microscopic Cauchy balance equations, highlighting the classical and higher-order macroscopic stress tensors. The so-called homogeneous displacement associated with the micromorphic effective medium is derived from variational formulations. It allows establishing the extended Hill macrohomogeneity condition that prevails for the micromorphic continuum, wherein the higher-order stress tensors arise as the static variables conjugated to the selected macroscopic degrees of freedom. Suitable projections of the introduced kinematic micromorphic variables into degenerated kinematic variables lead to various subclasses of generalized continua: microstretch, micropolar, couple stress, microdilatation, microstrain, microshear, and strain gradient. An asymptotic ranking of the formulated generalized continua versus a small-scale parameter is formulated in the last part of the paper to quantify their relative importance. The micromorphic homogenization scheme is validated by comparing the predictions of the homogenized response at the macroscale for a double shear test to a reference exact solution. The proposed micromorphic homogenization method remedy most of the limitations of the existing schemes of the literature.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"35 6","pages":"2163 - 2192"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-023-01239-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Hierarchy of generalized continua issued from micromorphic medium constructed by homogenization\",\"authors\":\"S. E. Alavi,&nbsp;J. F. Ganghoffer,&nbsp;H. Reda,&nbsp;M. Sadighi\",\"doi\":\"10.1007/s00161-023-01239-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present contribution provides a classification of generalized continua constructed by a micromechanical approach, relying on an extension of the Hill macrohomogeneity condition. The virtual power of equilibrium for a micromorphic effective medium is derived from the microscopic Cauchy balance equations, highlighting the classical and higher-order macroscopic stress tensors. The so-called homogeneous displacement associated with the micromorphic effective medium is derived from variational formulations. It allows establishing the extended Hill macrohomogeneity condition that prevails for the micromorphic continuum, wherein the higher-order stress tensors arise as the static variables conjugated to the selected macroscopic degrees of freedom. Suitable projections of the introduced kinematic micromorphic variables into degenerated kinematic variables lead to various subclasses of generalized continua: microstretch, micropolar, couple stress, microdilatation, microstrain, microshear, and strain gradient. An asymptotic ranking of the formulated generalized continua versus a small-scale parameter is formulated in the last part of the paper to quantify their relative importance. The micromorphic homogenization scheme is validated by comparing the predictions of the homogenized response at the macroscale for a double shear test to a reference exact solution. The proposed micromorphic homogenization method remedy most of the limitations of the existing schemes of the literature.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"35 6\",\"pages\":\"2163 - 2192\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-023-01239-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01239-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01239-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本贡献根据Hill宏观齐性条件的扩展,通过微观力学方法对广义连续体进行了分类。微观有效介质的虚平衡幂是从微观柯西平衡方程中导出的,突出了经典和高阶宏观应力张量。与微形态有效介质相关的所谓均匀位移是从变分公式推导出来的。它允许建立适用于微形态连续体的扩展Hill宏观齐性条件,其中高阶应力张量作为与所选宏观自由度共轭的静态变量出现。将引入的运动学微形态变量适当地投影到退化的运动学变量中,导致广义连续体的各种子类:微拉伸、微极性、耦合应力、微扩张、微应变、微剪切和应变梯度。在本文的最后部分,给出了公式化的广义连续体与小尺度参数的渐近排序,以量化它们的相对重要性。通过将双剪切试验的宏观均匀化响应预测与参考精确解进行比较,验证了微形态均匀化方案。所提出的微形态均匀化方法弥补了现有文献方案的大部分局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchy of generalized continua issued from micromorphic medium constructed by homogenization

The present contribution provides a classification of generalized continua constructed by a micromechanical approach, relying on an extension of the Hill macrohomogeneity condition. The virtual power of equilibrium for a micromorphic effective medium is derived from the microscopic Cauchy balance equations, highlighting the classical and higher-order macroscopic stress tensors. The so-called homogeneous displacement associated with the micromorphic effective medium is derived from variational formulations. It allows establishing the extended Hill macrohomogeneity condition that prevails for the micromorphic continuum, wherein the higher-order stress tensors arise as the static variables conjugated to the selected macroscopic degrees of freedom. Suitable projections of the introduced kinematic micromorphic variables into degenerated kinematic variables lead to various subclasses of generalized continua: microstretch, micropolar, couple stress, microdilatation, microstrain, microshear, and strain gradient. An asymptotic ranking of the formulated generalized continua versus a small-scale parameter is formulated in the last part of the paper to quantify their relative importance. The micromorphic homogenization scheme is validated by comparing the predictions of the homogenized response at the macroscale for a double shear test to a reference exact solution. The proposed micromorphic homogenization method remedy most of the limitations of the existing schemes of the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
期刊最新文献
An analytical model for debonding of composite cantilever beams under point loads Predictive models for bone remodeling during orthodontic tooth movement: a scoping review on the “biological metamaterial” periodontal ligament interface Mixed FEM implementation of three-point bending of the beam with an edge crack within strain gradient elasticity theory An enhanced beam model incorporating a hysteresis-based solid friction damping mechanism for cementitious materials A frequency-dependent model for bone remodeling using a micromorphic porous medium subjected to harmonic mechanical loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1