{"title":"基于频域荧光寿命成像显微镜测量和微流体平台的高效单细胞耗氧率表征。","authors":"Santhosh Kannan, Ping-Liang Ko, Hsiao-Mei Wu, Yi-Chung Tung","doi":"10.1063/5.0161752","DOIUrl":null,"url":null,"abstract":"<p><p>Cell metabolism is critical in regulating normal cell functions to maintain energy homeostasis. In order to monitor cell metabolism, the oxygen consumption rate (OCR) of cells has been characterized as an important factor. In conventional cell analysis, the cells are characterized in bulk due to technical limitations. However, the heterogeneity between the cells cannot be identified. Therefore, single-cell analysis has been proposed to reveal cellular functions and their heterogeneity. In this research, an approach integrating a microfluidic device and widefield frequency domain fluorescence imaging lifetime microscopy (FD-FLIM) for single-cell OCR characterization in an efficient manner is developed. The microfluidic device provides an efficient platform to trap and isolate single cells in microwells with the buffer saline containing an oxygen-sensitive phosphorescent dye. The oxygen tension variation within the microwells can be efficiently estimated by measuring the fluorescence lifetime change using the FD-FLIM, and the OCR values of the single cells can then be calculated. In the experiments, breast cancer (MCF-7) cells are exploited for the OCR measurement. The results demonstrate the functionality of the developed approach and show the heterogeneity among the cells. The developed approach possesses great potential to advance cellular metabolism studies with single-cell resolution.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576626/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient single-cell oxygen consumption rate characterization based on frequency domain fluorescence lifetime imaging microscopy measurement and microfluidic platform.\",\"authors\":\"Santhosh Kannan, Ping-Liang Ko, Hsiao-Mei Wu, Yi-Chung Tung\",\"doi\":\"10.1063/5.0161752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell metabolism is critical in regulating normal cell functions to maintain energy homeostasis. In order to monitor cell metabolism, the oxygen consumption rate (OCR) of cells has been characterized as an important factor. In conventional cell analysis, the cells are characterized in bulk due to technical limitations. However, the heterogeneity between the cells cannot be identified. Therefore, single-cell analysis has been proposed to reveal cellular functions and their heterogeneity. In this research, an approach integrating a microfluidic device and widefield frequency domain fluorescence imaging lifetime microscopy (FD-FLIM) for single-cell OCR characterization in an efficient manner is developed. The microfluidic device provides an efficient platform to trap and isolate single cells in microwells with the buffer saline containing an oxygen-sensitive phosphorescent dye. The oxygen tension variation within the microwells can be efficiently estimated by measuring the fluorescence lifetime change using the FD-FLIM, and the OCR values of the single cells can then be calculated. In the experiments, breast cancer (MCF-7) cells are exploited for the OCR measurement. The results demonstrate the functionality of the developed approach and show the heterogeneity among the cells. The developed approach possesses great potential to advance cellular metabolism studies with single-cell resolution.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0161752\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0161752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Efficient single-cell oxygen consumption rate characterization based on frequency domain fluorescence lifetime imaging microscopy measurement and microfluidic platform.
Cell metabolism is critical in regulating normal cell functions to maintain energy homeostasis. In order to monitor cell metabolism, the oxygen consumption rate (OCR) of cells has been characterized as an important factor. In conventional cell analysis, the cells are characterized in bulk due to technical limitations. However, the heterogeneity between the cells cannot be identified. Therefore, single-cell analysis has been proposed to reveal cellular functions and their heterogeneity. In this research, an approach integrating a microfluidic device and widefield frequency domain fluorescence imaging lifetime microscopy (FD-FLIM) for single-cell OCR characterization in an efficient manner is developed. The microfluidic device provides an efficient platform to trap and isolate single cells in microwells with the buffer saline containing an oxygen-sensitive phosphorescent dye. The oxygen tension variation within the microwells can be efficiently estimated by measuring the fluorescence lifetime change using the FD-FLIM, and the OCR values of the single cells can then be calculated. In the experiments, breast cancer (MCF-7) cells are exploited for the OCR measurement. The results demonstrate the functionality of the developed approach and show the heterogeneity among the cells. The developed approach possesses great potential to advance cellular metabolism studies with single-cell resolution.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...