以机构的科学影响为先验信息量化科学家的研究能力

IF 1.8 4区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information Science Pub Date : 2023-08-23 DOI:10.1177/01655515231191231
Shengzhi Huang, Wei Lu, Yong Huang, Zhuoran Luo
{"title":"以机构的科学影响为先验信息量化科学家的研究能力","authors":"Shengzhi Huang, Wei Lu, Yong Huang, Zhuoran Luo","doi":"10.1177/01655515231191231","DOIUrl":null,"url":null,"abstract":"Scholar performance evaluation is extremely important in research assessment decisions, such as funding allocation, academic rankings, and academic promotion. In this article, we propose the institution Q model (IQ) and its two variants (IQ-2 and IQ-3), which aim to evaluate the individual-level research ability to publish high-quality scientific papers. Specifically, our models integrate scientists’ institutions, countries and collaborators as valuable prior information and jointly evaluate the research ability of scientists from different institutions. To estimate model parameters and hidden variables defined in our models, we propose a generic BBVI-EM algorithm. To test the effectiveness of our models, we examine their performance on the synthetic data and the empirical data (17,750/26,992 scientists in the computer science/physics field). We find that our models can more accurately quantify the research ability of scientists and institutions and more effectively predict scientists’ scientific impact (the h-index and total citations) than the Q model and common machine learning models. In conclusion, our models are effective evaluation and prediction tools for quantifying research ability and predicting the scientific impact, and the BBVI-EM algorithm is an effective variational inference algorithm. This study makes a theoretical contribution to broaden the idea of incorporating the academic environment into scientific evaluation.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":"61 24","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying scientists’ research ability by taking institutions’ scientific impact as priori information\",\"authors\":\"Shengzhi Huang, Wei Lu, Yong Huang, Zhuoran Luo\",\"doi\":\"10.1177/01655515231191231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scholar performance evaluation is extremely important in research assessment decisions, such as funding allocation, academic rankings, and academic promotion. In this article, we propose the institution Q model (IQ) and its two variants (IQ-2 and IQ-3), which aim to evaluate the individual-level research ability to publish high-quality scientific papers. Specifically, our models integrate scientists’ institutions, countries and collaborators as valuable prior information and jointly evaluate the research ability of scientists from different institutions. To estimate model parameters and hidden variables defined in our models, we propose a generic BBVI-EM algorithm. To test the effectiveness of our models, we examine their performance on the synthetic data and the empirical data (17,750/26,992 scientists in the computer science/physics field). We find that our models can more accurately quantify the research ability of scientists and institutions and more effectively predict scientists’ scientific impact (the h-index and total citations) than the Q model and common machine learning models. In conclusion, our models are effective evaluation and prediction tools for quantifying research ability and predicting the scientific impact, and the BBVI-EM algorithm is an effective variational inference algorithm. This study makes a theoretical contribution to broaden the idea of incorporating the academic environment into scientific evaluation.\",\"PeriodicalId\":54796,\"journal\":{\"name\":\"Journal of Information Science\",\"volume\":\"61 24\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01655515231191231\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515231191231","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

学者绩效评价在科研经费分配、学术排名、学术推广等科研评估决策中具有极其重要的作用。在本文中,我们提出了机构Q模型(IQ)及其两个变体(IQ-2和IQ-3),旨在评估个体层面发表高质量科学论文的研究能力。具体而言,我们的模型将科学家的机构、国家和合作者作为有价值的先验信息,并共同评估来自不同机构的科学家的研究能力。为了估计模型中定义的模型参数和隐变量,我们提出了一种通用的BBVI-EM算法。为了测试我们模型的有效性,我们检查了它们在合成数据和经验数据(17,750/26,992名计算机科学/物理领域的科学家)上的表现。我们发现,与Q模型和常见的机器学习模型相比,我们的模型可以更准确地量化科学家和机构的研究能力,并更有效地预测科学家的科学影响(h指数和总引用)。综上所述,我们的模型是量化研究能力和预测科学影响的有效评价和预测工具,BBVI-EM算法是一种有效的变分推理算法。本研究为拓宽学术环境纳入科学评价的思路做出了理论贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying scientists’ research ability by taking institutions’ scientific impact as priori information
Scholar performance evaluation is extremely important in research assessment decisions, such as funding allocation, academic rankings, and academic promotion. In this article, we propose the institution Q model (IQ) and its two variants (IQ-2 and IQ-3), which aim to evaluate the individual-level research ability to publish high-quality scientific papers. Specifically, our models integrate scientists’ institutions, countries and collaborators as valuable prior information and jointly evaluate the research ability of scientists from different institutions. To estimate model parameters and hidden variables defined in our models, we propose a generic BBVI-EM algorithm. To test the effectiveness of our models, we examine their performance on the synthetic data and the empirical data (17,750/26,992 scientists in the computer science/physics field). We find that our models can more accurately quantify the research ability of scientists and institutions and more effectively predict scientists’ scientific impact (the h-index and total citations) than the Q model and common machine learning models. In conclusion, our models are effective evaluation and prediction tools for quantifying research ability and predicting the scientific impact, and the BBVI-EM algorithm is an effective variational inference algorithm. This study makes a theoretical contribution to broaden the idea of incorporating the academic environment into scientific evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Science
Journal of Information Science 工程技术-计算机:信息系统
CiteScore
6.80
自引率
8.30%
发文量
121
审稿时长
4 months
期刊介绍: The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.
期刊最新文献
Government chatbot: Empowering smart conversations with enhanced contextual understanding and reasoning Knowing within multispecies families: An information experience study How are global university rankings adjusted for erroneous science, fraud and misconduct? Posterior reduction or adjustment in rankings in response to retractions and invalidation of scientific findings Predicting the technological impact of papers: Exploring optimal models and most important features Cross-domain corpus selection for cold-start context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1