{"title":"R2中涉及临界指数增长的周期椭圆型问题的凹摄动","authors":"Xiaoyan Lin, Xianhua Tang","doi":"10.1515/anona-2022-0257","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\\Delta u+V\\left(x)u=f\\left(x,u)+\\lambda a\\left(x)| u{| }^{q-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2}, where λ > 0 \\lambda \\gt 0 , q ∈ ( 1 , 2 ) q\\in \\left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\\in {L}^{2\\text{/}\\left(2-q)}\\left({{\\mathbb{R}}}^{2}) , V ( x ) V\\left(x) , and f ( x , t ) f\\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\\left(x,t) has critical exponential growth at t = ∞ t=\\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \\lambda \\gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":"169 - 181"},"PeriodicalIF":3.2000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On concave perturbations of a periodic elliptic problem in R2 involving critical exponential growth\",\"authors\":\"Xiaoyan Lin, Xianhua Tang\",\"doi\":\"10.1515/anona-2022-0257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\\\\Delta u+V\\\\left(x)u=f\\\\left(x,u)+\\\\lambda a\\\\left(x)| u{| }^{q-2}u,\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{2}, where λ > 0 \\\\lambda \\\\gt 0 , q ∈ ( 1 , 2 ) q\\\\in \\\\left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\\\\in {L}^{2\\\\text{/}\\\\left(2-q)}\\\\left({{\\\\mathbb{R}}}^{2}) , V ( x ) V\\\\left(x) , and f ( x , t ) f\\\\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\\\\left(x,t) has critical exponential growth at t = ∞ t=\\\\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \\\\lambda \\\\gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"12 1\",\"pages\":\"169 - 181\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0257\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0257","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文考虑了形式为(0.1)−Δ u + V (x) u = f (x, u) + λ a (x)∣u∣q−2 u, x∈r2, -的非线性椭圆方程解的存在性\Delta u+V\leftu=f\left(x,u)+\lambda a\left(x)| u{| }^{q-2}你,\hspace{1em}x\in {{\mathbb{R}}}^{2},其中λ > 0 \lambda \gt 0, q∈(1,2)q\in \left(1,2), a∈l2 /(2−q) (r2) a\in {l}^{2\text{/}\left(2-q)}\left({{\mathbb{R}}}^{2}), V (x) V\left(x) f (x, t) f\left(x,t)是关于x x的1周期函数,f (x,t) f\left(x,t)在t=∞处具有临界指数增长\infty 。结合变分方法、Trudinger-Moser不等式和一些新的技术,详细估计了能量泛函的极大极小水平,证明了上述方程在一些弱假设下的非平凡解的存在性。我们的结果表明,凹项(即λ > 0)的存在 \lambda \gt 0)在某种意义上对方程(0.1)非平凡解的存在性有很大帮助。
On concave perturbations of a periodic elliptic problem in R2 involving critical exponential growth
Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\Delta u+V\left(x)u=f\left(x,u)+\lambda a\left(x)| u{| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{2}, where λ > 0 \lambda \gt 0 , q ∈ ( 1 , 2 ) q\in \left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\in {L}^{2\text{/}\left(2-q)}\left({{\mathbb{R}}}^{2}) , V ( x ) V\left(x) , and f ( x , t ) f\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\left(x,t) has critical exponential growth at t = ∞ t=\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \lambda \gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.