巴基斯坦新冠肺炎发病热点的时空分析:空间统计方法

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2023-11-01 DOI:10.1016/j.sste.2023.100603
Nayab Arif, Shakeel Mahmood
{"title":"巴基斯坦新冠肺炎发病热点的时空分析:空间统计方法","authors":"Nayab Arif,&nbsp;Shakeel Mahmood","doi":"10.1016/j.sste.2023.100603","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper analyzes the spread of COVID-19 in Pakistan using geo-statistical approach to geo-visualize the spatio-temporal pattern hotspots of active cases. The study is based on secondary data, collected from concerned Government Department. Getis-Ord-Gi* statistical model was used to estimate Z score and P score values representing the intensity of active cases in each location. The results indicate that the high intensity of active cases in the selected period is spatially distributed in Punjab and Sindh provinces and extending towards the west. The capital territory also experiences a slight increase in active cases rate. However, the rate of active cases decreases in Khyber Pakhtunkhwa (KP), Balochistan, Gilgit Baltistan (GB) and Azad Jammu and Kashmir with some fluctuations. Overall, this research highlights the usefulness of geo-statistical modeling for identifying hotspots of any epidemic or pandemic. By knowing the hotspots of a disease, policy makers can easily identify the reasons for its spread, trends, and distribution patterns, making it easier to develop management policies to tackle any pandemic situation in the future.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"47 ","pages":"Article 100603"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial analysis of COVID-19 incidence hotspots in Pakistan: A spatio-statistical approach\",\"authors\":\"Nayab Arif,&nbsp;Shakeel Mahmood\",\"doi\":\"10.1016/j.sste.2023.100603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research paper analyzes the spread of COVID-19 in Pakistan using geo-statistical approach to geo-visualize the spatio-temporal pattern hotspots of active cases. The study is based on secondary data, collected from concerned Government Department. Getis-Ord-Gi* statistical model was used to estimate Z score and P score values representing the intensity of active cases in each location. The results indicate that the high intensity of active cases in the selected period is spatially distributed in Punjab and Sindh provinces and extending towards the west. The capital territory also experiences a slight increase in active cases rate. However, the rate of active cases decreases in Khyber Pakhtunkhwa (KP), Balochistan, Gilgit Baltistan (GB) and Azad Jammu and Kashmir with some fluctuations. Overall, this research highlights the usefulness of geo-statistical modeling for identifying hotspots of any epidemic or pandemic. By knowing the hotspots of a disease, policy makers can easily identify the reasons for its spread, trends, and distribution patterns, making it easier to develop management policies to tackle any pandemic situation in the future.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"47 \",\"pages\":\"Article 100603\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584523000400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584523000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

本文采用地理统计学方法对新冠肺炎在巴基斯坦的传播进行分析,对活跃病例的时空格局热点进行地理可视化。这项研究基于从有关政府部门收集的二手数据。采用Getis-Ord-Gi*统计模型估计代表各部位活动病例强度的Z评分和P评分值。结果表明:疫区高发病例在空间上主要分布在旁遮普省和信德省,并向西扩展;首都地区的活跃病例率也略有上升。然而,在开伯尔-普赫图赫瓦省(KP)、俾路支省、吉尔吉特-巴尔蒂斯坦(GB)和阿扎德-查谟和克什米尔,活跃病例率有所下降,但有一些波动。总的来说,这项研究突出了地理统计模型在确定任何流行病或大流行热点方面的有用性。通过了解一种疾病的热点,政策制定者可以很容易地确定其传播的原因、趋势和分布模式,从而更容易制定管理政策,以应对未来的任何大流行情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal and spatial analysis of COVID-19 incidence hotspots in Pakistan: A spatio-statistical approach

This research paper analyzes the spread of COVID-19 in Pakistan using geo-statistical approach to geo-visualize the spatio-temporal pattern hotspots of active cases. The study is based on secondary data, collected from concerned Government Department. Getis-Ord-Gi* statistical model was used to estimate Z score and P score values representing the intensity of active cases in each location. The results indicate that the high intensity of active cases in the selected period is spatially distributed in Punjab and Sindh provinces and extending towards the west. The capital territory also experiences a slight increase in active cases rate. However, the rate of active cases decreases in Khyber Pakhtunkhwa (KP), Balochistan, Gilgit Baltistan (GB) and Azad Jammu and Kashmir with some fluctuations. Overall, this research highlights the usefulness of geo-statistical modeling for identifying hotspots of any epidemic or pandemic. By knowing the hotspots of a disease, policy makers can easily identify the reasons for its spread, trends, and distribution patterns, making it easier to develop management policies to tackle any pandemic situation in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Editorial Board Geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitors for type 2 diabetes among Medicare beneficiaries Spatial modeling and risk assessment of chagas disease vector distribution in Espírito Santo, Brazil: A comprehensive approach for targeted control A fast approach for analyzing spatio-temporal patterns in ischemic heart disease mortality across US counties (1999–2021) Estimating subnational under-five mortality rates using a spatio-temporal Age-Period-Cohort model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1