火灾中钢和混凝土构件传热模型的研究进展

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Research of the National Institute of Standards and Technology Pub Date : 2021-10-22 eCollection Date: 2021-01-01 DOI:10.6028/jres.126.030
Dilip K Banerjee
{"title":"火灾中钢和混凝土构件传热模型的研究进展","authors":"Dilip K Banerjee","doi":"10.6028/jres.126.030","DOIUrl":null,"url":null,"abstract":"<p><p>Structural design for fire is conceptually similar to structural design conducted under ambient temperature conditions. Such design requires an establishment of clear objectives and determination of the severity of the design fire. In the commonly used prescriptive design method for fire, fire resistance (expressed in hours) is the primary qualification metric. This is an artifact of the standard fire tests that are used to determine this quantity. When conducting a performance-based approach for structural design for fire, it is important to determine structural member temperatures accurately when the members are exposed to a real fire. In order to evaluate the fire resistance of structural members such as structural steels and concrete, both the temporal and spatial variation of temperatures must be accurately determined. The transient temperature profiles in structural members during exposure to a fire can be determined from a heat transfer analysis. There are several models/approaches for analyzing heat transfer that have been used to determine the transient structural temperatures during a fire event. These range from simple models to advanced models involving three-dimensional heat transfer analysis employing finite element or finite difference techniques. This document provides a brief summary of some of the common simple and advanced approaches that have been used for conducting heat transfer analysis of both steel and concrete members when exposed to fire.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249205/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Models for Heat Transfer in Steel and Concrete Members During Fire.\",\"authors\":\"Dilip K Banerjee\",\"doi\":\"10.6028/jres.126.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural design for fire is conceptually similar to structural design conducted under ambient temperature conditions. Such design requires an establishment of clear objectives and determination of the severity of the design fire. In the commonly used prescriptive design method for fire, fire resistance (expressed in hours) is the primary qualification metric. This is an artifact of the standard fire tests that are used to determine this quantity. When conducting a performance-based approach for structural design for fire, it is important to determine structural member temperatures accurately when the members are exposed to a real fire. In order to evaluate the fire resistance of structural members such as structural steels and concrete, both the temporal and spatial variation of temperatures must be accurately determined. The transient temperature profiles in structural members during exposure to a fire can be determined from a heat transfer analysis. There are several models/approaches for analyzing heat transfer that have been used to determine the transient structural temperatures during a fire event. These range from simple models to advanced models involving three-dimensional heat transfer analysis employing finite element or finite difference techniques. This document provides a brief summary of some of the common simple and advanced approaches that have been used for conducting heat transfer analysis of both steel and concrete members when exposed to fire.</p>\",\"PeriodicalId\":54766,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.126.030\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.126.030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

火灾的结构设计在概念上类似于在环境温度条件下进行的结构设计。这种设计需要建立明确的目标,并确定设计火灾的严重程度。在常用的防火规范性设计方法中,耐火性(以小时表示)是主要的鉴定指标。这是用于确定这个数量的标准火灾测试的产物。在对火灾结构设计进行基于性能的方法时,当构件暴露在真实火灾中时,准确确定结构构件温度是很重要的。为了评估结构钢和混凝土等结构构件的耐火性,必须准确确定温度的时间和空间变化。结构构件在暴露于火灾期间的瞬态温度分布可以通过热传递分析来确定。有几种用于分析传热的模型/方法已用于确定火灾事件期间的瞬态结构温度。这些模型从简单模型到高级模型,涉及使用有限元或有限差分技术的三维传热分析。本文件简要总结了一些常见的简单和先进的方法,这些方法用于对暴露在火灾中的钢和混凝土构件进行传热分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Models for Heat Transfer in Steel and Concrete Members During Fire.

Structural design for fire is conceptually similar to structural design conducted under ambient temperature conditions. Such design requires an establishment of clear objectives and determination of the severity of the design fire. In the commonly used prescriptive design method for fire, fire resistance (expressed in hours) is the primary qualification metric. This is an artifact of the standard fire tests that are used to determine this quantity. When conducting a performance-based approach for structural design for fire, it is important to determine structural member temperatures accurately when the members are exposed to a real fire. In order to evaluate the fire resistance of structural members such as structural steels and concrete, both the temporal and spatial variation of temperatures must be accurately determined. The transient temperature profiles in structural members during exposure to a fire can be determined from a heat transfer analysis. There are several models/approaches for analyzing heat transfer that have been used to determine the transient structural temperatures during a fire event. These range from simple models to advanced models involving three-dimensional heat transfer analysis employing finite element or finite difference techniques. This document provides a brief summary of some of the common simple and advanced approaches that have been used for conducting heat transfer analysis of both steel and concrete members when exposed to fire.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
期刊最新文献
Models for an Ultraviolet-C Research and Development Consortium. Disinfection of Respirators with Ultraviolet Radiation. Capacity Models and Transmission Risk Mitigation: An Engineering Framework to Predict the Effect of Air Disinfection by Germicidal Ultraviolet Radiation. Portable Ultraviolet-C Chambers for Inactivation of SARS-CoV-2. Calorimetry in Computed Tomography Beams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1