海豚的声音产生通过深波根

Lue Zhang , Hai-Ning Huang , Li Yin , Bao-Qi Li , Di Wu , Hao-Ran Liu , Xi-Feng Li , Yong-Le Xie
{"title":"海豚的声音产生通过深波根","authors":"Lue Zhang ,&nbsp;Hai-Ning Huang ,&nbsp;Li Yin ,&nbsp;Bao-Qi Li ,&nbsp;Di Wu ,&nbsp;Hao-Ran Liu ,&nbsp;Xi-Feng Li ,&nbsp;Yong-Le Xie","doi":"10.1016/j.jnlest.2022.100171","DOIUrl":null,"url":null,"abstract":"<div><p>The marine biological sonar system evolved in the struggle of nature is far superior to the current artificial sonar. Therefore, the development of bionic underwater concealed detection is of great strategic significance to the military and economy. In this paper, a generative adversarial network (GAN) is trained based on the dolphin vocal sound dataset we constructed, which can achieve unsupervised generation of dolphin vocal sounds with global consistency. Through the analysis of the generated audio samples and the real audio samples in the time domain and the frequency domain, it can be proven that the generated audio samples are close to the real audio samples, which meets the requirements of bionic underwater concealed detection.</p></div>","PeriodicalId":53467,"journal":{"name":"Journal of Electronic Science and Technology","volume":"20 3","pages":"Article 100171"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674862X22000246/pdfft?md5=2570662ea1de4d606f71aca4e0d5a856&pid=1-s2.0-S1674862X22000246-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Dolphin vocal sound generation via deep WaveGAN\",\"authors\":\"Lue Zhang ,&nbsp;Hai-Ning Huang ,&nbsp;Li Yin ,&nbsp;Bao-Qi Li ,&nbsp;Di Wu ,&nbsp;Hao-Ran Liu ,&nbsp;Xi-Feng Li ,&nbsp;Yong-Le Xie\",\"doi\":\"10.1016/j.jnlest.2022.100171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The marine biological sonar system evolved in the struggle of nature is far superior to the current artificial sonar. Therefore, the development of bionic underwater concealed detection is of great strategic significance to the military and economy. In this paper, a generative adversarial network (GAN) is trained based on the dolphin vocal sound dataset we constructed, which can achieve unsupervised generation of dolphin vocal sounds with global consistency. Through the analysis of the generated audio samples and the real audio samples in the time domain and the frequency domain, it can be proven that the generated audio samples are close to the real audio samples, which meets the requirements of bionic underwater concealed detection.</p></div>\",\"PeriodicalId\":53467,\"journal\":{\"name\":\"Journal of Electronic Science and Technology\",\"volume\":\"20 3\",\"pages\":\"Article 100171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674862X22000246/pdfft?md5=2570662ea1de4d606f71aca4e0d5a856&pid=1-s2.0-S1674862X22000246-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Science and Technology\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674862X22000246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Science and Technology","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674862X22000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

海洋生物声纳系统在与大自然的斗争中进化而来,远远优于目前的人工声纳。因此,发展仿生水下隐蔽探测技术对军事和经济都具有重要的战略意义。本文以构建的海豚声音数据集为基础,训练生成式对抗网络(GAN),实现无监督生成具有全局一致性的海豚声音。通过对生成的音频样本和真实音频样本在时域和频域的分析,可以证明生成的音频样本接近真实音频样本,满足仿生水下隐蔽检测的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dolphin vocal sound generation via deep WaveGAN

The marine biological sonar system evolved in the struggle of nature is far superior to the current artificial sonar. Therefore, the development of bionic underwater concealed detection is of great strategic significance to the military and economy. In this paper, a generative adversarial network (GAN) is trained based on the dolphin vocal sound dataset we constructed, which can achieve unsupervised generation of dolphin vocal sounds with global consistency. Through the analysis of the generated audio samples and the real audio samples in the time domain and the frequency domain, it can be proven that the generated audio samples are close to the real audio samples, which meets the requirements of bionic underwater concealed detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Science and Technology
Journal of Electronic Science and Technology Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
0.00%
发文量
1362
审稿时长
99 days
期刊介绍: JEST (International) covers the state-of-the-art achievements in electronic science and technology, including the most highlight areas: ¨ Communication Technology ¨ Computer Science and Information Technology ¨ Information and Network Security ¨ Bioelectronics and Biomedicine ¨ Neural Networks and Intelligent Systems ¨ Electronic Systems and Array Processing ¨ Optoelectronic and Photonic Technologies ¨ Electronic Materials and Devices ¨ Sensing and Measurement ¨ Signal Processing and Image Processing JEST (International) is dedicated to building an open, high-level academic journal supported by researchers, professionals, and academicians. The Journal has been fully indexed by Ei INSPEC and has published, with great honor, the contributions from more than 20 countries and regions in the world.
期刊最新文献
Source localization based on field signatures: Laboratory ultrasonic validation Machine learning model based on non-convex penalized huberized-SVM Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology A multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1