L. Shapira, Shaul Lerner, Guila Assayag, A. Vardi, D. Haham, Gideon Bar, Vicky Fidelsky Kozokaro, Maayan Elias Robicsek, Immanuel Lerner, Amit Michaeli
{"title":"用于计算机强化学习的新型刺突/ACE2抑制性大环的发现","authors":"L. Shapira, Shaul Lerner, Guila Assayag, A. Vardi, D. Haham, Gideon Bar, Vicky Fidelsky Kozokaro, Maayan Elias Robicsek, Immanuel Lerner, Amit Michaeli","doi":"10.3389/fddsv.2022.1085701","DOIUrl":null,"url":null,"abstract":"Introduction: The COVID-19 pandemic has cast a heavy toll in human lives and global economics. COVID-19 is caused by the SARS-CoV-2 virus, which infects cells via its spike protein binding human ACE2. Methods: To discover potential inhibitory peptidomimetic macrocycles for the spike/ACE2 complex we deployed Artificial Intelligence guided virtual screening with three distinct strategies: 1) Allosteric spike inhibitors 2) Competitive ACE2 inhibitors and 3) Competitive spike inhibitors. Screening was performed by docking macrocycles to the relevant sites, clustering and synthesizing cluster representatives. Synthesized molecules were screened for inhibition using AlphaLISA and RSV particles. Results: All three strategies yielded inhibitory peptides, but only the competitive spike inhibitors showed “hit” level activity. Discussion: These results suggest that direct inhibition of the spike RBD domain is the most attractive strategy for peptidomimetic, “head-to-tail” macrocycle drug development against the ongoing pandemic.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovery of novel spike/ACE2 inhibitory macrocycles using in silico reinforcement learning\",\"authors\":\"L. Shapira, Shaul Lerner, Guila Assayag, A. Vardi, D. Haham, Gideon Bar, Vicky Fidelsky Kozokaro, Maayan Elias Robicsek, Immanuel Lerner, Amit Michaeli\",\"doi\":\"10.3389/fddsv.2022.1085701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The COVID-19 pandemic has cast a heavy toll in human lives and global economics. COVID-19 is caused by the SARS-CoV-2 virus, which infects cells via its spike protein binding human ACE2. Methods: To discover potential inhibitory peptidomimetic macrocycles for the spike/ACE2 complex we deployed Artificial Intelligence guided virtual screening with three distinct strategies: 1) Allosteric spike inhibitors 2) Competitive ACE2 inhibitors and 3) Competitive spike inhibitors. Screening was performed by docking macrocycles to the relevant sites, clustering and synthesizing cluster representatives. Synthesized molecules were screened for inhibition using AlphaLISA and RSV particles. Results: All three strategies yielded inhibitory peptides, but only the competitive spike inhibitors showed “hit” level activity. Discussion: These results suggest that direct inhibition of the spike RBD domain is the most attractive strategy for peptidomimetic, “head-to-tail” macrocycle drug development against the ongoing pandemic.\",\"PeriodicalId\":73080,\"journal\":{\"name\":\"Frontiers in drug discovery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddsv.2022.1085701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.1085701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery of novel spike/ACE2 inhibitory macrocycles using in silico reinforcement learning
Introduction: The COVID-19 pandemic has cast a heavy toll in human lives and global economics. COVID-19 is caused by the SARS-CoV-2 virus, which infects cells via its spike protein binding human ACE2. Methods: To discover potential inhibitory peptidomimetic macrocycles for the spike/ACE2 complex we deployed Artificial Intelligence guided virtual screening with three distinct strategies: 1) Allosteric spike inhibitors 2) Competitive ACE2 inhibitors and 3) Competitive spike inhibitors. Screening was performed by docking macrocycles to the relevant sites, clustering and synthesizing cluster representatives. Synthesized molecules were screened for inhibition using AlphaLISA and RSV particles. Results: All three strategies yielded inhibitory peptides, but only the competitive spike inhibitors showed “hit” level activity. Discussion: These results suggest that direct inhibition of the spike RBD domain is the most attractive strategy for peptidomimetic, “head-to-tail” macrocycle drug development against the ongoing pandemic.