氧化石墨烯上ZIF-8衍生的Fe/N掺杂碳框架用于有效的氧还原反应

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Electronic Materials Letters Pub Date : 2023-06-20 DOI:10.1007/s13391-023-00441-4
Yating Zhang, Pei He, Dongxian Zhuo, Jianlan Zhang, Nana Zhang, Xiaobo Wang, Gang Lin, Zhenghan Kong
{"title":"氧化石墨烯上ZIF-8衍生的Fe/N掺杂碳框架用于有效的氧还原反应","authors":"Yating Zhang,&nbsp;Pei He,&nbsp;Dongxian Zhuo,&nbsp;Jianlan Zhang,&nbsp;Nana Zhang,&nbsp;Xiaobo Wang,&nbsp;Gang Lin,&nbsp;Zhenghan Kong","doi":"10.1007/s13391-023-00441-4","DOIUrl":null,"url":null,"abstract":"<div><p>Exploration of highly efficient non-noble metal oxygen reduction reaction (ORR) catalysts is essential for the widespread industrial utilization of fuel cells. Herein, we demonstrated a hierarchical porous catalyst (denoted as Fe-NC-Gs) using a simple stirring and one-step pyrolysis method. ZIF-8-derived N-doped carbon framework loaded on graphene oxide, on which Fe<sub>3</sub>O<sub>4</sub> and FeS nanoparticles are uniformly dispersed. In the composite nanostructure, a high surface area (470.58 m<sup>2</sup> g<sup>−1</sup>) and hierarchical porous structure were observed. The obtained Fe-NC-G-2 exhibits superior ORR properties. The half-wave potential (E<sub>1/2</sub>) and the limiting current density in alkaline media were up to 0.85 V and − 5.39 mA cm<sup>−2</sup>, respectively, comparable to the commercially available Pt/C. The four-electron-dominated process was exhibited in the ORR catalysis. It also manifests a better methanol tolerance and electrochemical stability during the chronoamperometry measurement in 0.1 M KOH. These results suggest that the proposed strategy provides a new pathway to construct efficient electrocatalysts for ORR.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"95 - 101"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe/N-Doped Carbon Framework Derived from ZIF-8 on Graphene Oxide for Efficient Oxygen Reduction Reaction\",\"authors\":\"Yating Zhang,&nbsp;Pei He,&nbsp;Dongxian Zhuo,&nbsp;Jianlan Zhang,&nbsp;Nana Zhang,&nbsp;Xiaobo Wang,&nbsp;Gang Lin,&nbsp;Zhenghan Kong\",\"doi\":\"10.1007/s13391-023-00441-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploration of highly efficient non-noble metal oxygen reduction reaction (ORR) catalysts is essential for the widespread industrial utilization of fuel cells. Herein, we demonstrated a hierarchical porous catalyst (denoted as Fe-NC-Gs) using a simple stirring and one-step pyrolysis method. ZIF-8-derived N-doped carbon framework loaded on graphene oxide, on which Fe<sub>3</sub>O<sub>4</sub> and FeS nanoparticles are uniformly dispersed. In the composite nanostructure, a high surface area (470.58 m<sup>2</sup> g<sup>−1</sup>) and hierarchical porous structure were observed. The obtained Fe-NC-G-2 exhibits superior ORR properties. The half-wave potential (E<sub>1/2</sub>) and the limiting current density in alkaline media were up to 0.85 V and − 5.39 mA cm<sup>−2</sup>, respectively, comparable to the commercially available Pt/C. The four-electron-dominated process was exhibited in the ORR catalysis. It also manifests a better methanol tolerance and electrochemical stability during the chronoamperometry measurement in 0.1 M KOH. These results suggest that the proposed strategy provides a new pathway to construct efficient electrocatalysts for ORR.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 2\",\"pages\":\"95 - 101\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00441-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00441-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索高效的非贵金属氧还原反应(ORR)催化剂对于燃料电池的广泛工业应用至关重要。在此,我们采用简单的搅拌和一步热解方法,展示了一种分层多孔催化剂(称为 Fe-NC-Gs)。ZIF-8 衍生的掺杂 N 的碳框架负载在氧化石墨烯上,Fe3O4 和 FeS 纳米颗粒均匀地分散在其上。在该复合纳米结构中,观察到了高比表面积(470.58 m2 g-1)和分层多孔结构。获得的 Fe-NC-G-2 具有优异的 ORR 性能。在碱性介质中的半波电位(E1/2)和极限电流密度分别高达 0.85 V 和 - 5.39 mA cm-2,与市售的 Pt/C 相当。在 ORR 催化过程中,呈现出四电子主导的过程。在 0.1 M KOH 中进行计时器测量时,它还表现出更好的甲醇耐受性和电化学稳定性。这些结果表明,所提出的策略为构建高效的 ORR 电催化剂提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe/N-Doped Carbon Framework Derived from ZIF-8 on Graphene Oxide for Efficient Oxygen Reduction Reaction

Exploration of highly efficient non-noble metal oxygen reduction reaction (ORR) catalysts is essential for the widespread industrial utilization of fuel cells. Herein, we demonstrated a hierarchical porous catalyst (denoted as Fe-NC-Gs) using a simple stirring and one-step pyrolysis method. ZIF-8-derived N-doped carbon framework loaded on graphene oxide, on which Fe3O4 and FeS nanoparticles are uniformly dispersed. In the composite nanostructure, a high surface area (470.58 m2 g−1) and hierarchical porous structure were observed. The obtained Fe-NC-G-2 exhibits superior ORR properties. The half-wave potential (E1/2) and the limiting current density in alkaline media were up to 0.85 V and − 5.39 mA cm−2, respectively, comparable to the commercially available Pt/C. The four-electron-dominated process was exhibited in the ORR catalysis. It also manifests a better methanol tolerance and electrochemical stability during the chronoamperometry measurement in 0.1 M KOH. These results suggest that the proposed strategy provides a new pathway to construct efficient electrocatalysts for ORR.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
期刊最新文献
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1