基于XGBoost–SHAP的可解释机器学习模型预测空腔水深和空腔长度

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-06-12 DOI:10.2166/hydro.2023.050
Tiexiang Mo, Shanshan Li, Guodong Li
{"title":"基于XGBoost–SHAP的可解释机器学习模型预测空腔水深和空腔长度","authors":"Tiexiang Mo, Shanshan Li, Guodong Li","doi":"10.2166/hydro.2023.050","DOIUrl":null,"url":null,"abstract":"\n In contrast to the traditional black box machine learning model, the white box model can achieve higher prediction accuracy and accurately evaluate and explain the prediction results. Cavity water depth and cavity length of aeration facilities are predicted in this research based on Extreme Gradient Boosting (XGBoost) and a Bayesian optimization technique. The Shapley Additive Explanation (SHAP) method is then utilized to explain the prediction results. This study demonstrates how SHAP may order all features and feature interaction terms in accordance with the significance of the input features. The XGBoost–SHAP white box model can reasonably explain the prediction results of XGBoost both globally and locally and can achieve prediction accuracy comparable to the black box model. The cavity water depth and cavity length white box model developed in this study have a promising future application in the shape optimization of aeration facilities and the improvement of model experiments.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable machine learning model for predicting cavity water depth and cavity length based on XGBoost–SHAP\",\"authors\":\"Tiexiang Mo, Shanshan Li, Guodong Li\",\"doi\":\"10.2166/hydro.2023.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In contrast to the traditional black box machine learning model, the white box model can achieve higher prediction accuracy and accurately evaluate and explain the prediction results. Cavity water depth and cavity length of aeration facilities are predicted in this research based on Extreme Gradient Boosting (XGBoost) and a Bayesian optimization technique. The Shapley Additive Explanation (SHAP) method is then utilized to explain the prediction results. This study demonstrates how SHAP may order all features and feature interaction terms in accordance with the significance of the input features. The XGBoost–SHAP white box model can reasonably explain the prediction results of XGBoost both globally and locally and can achieve prediction accuracy comparable to the black box model. The cavity water depth and cavity length white box model developed in this study have a promising future application in the shape optimization of aeration facilities and the improvement of model experiments.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.050\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

与传统的黑盒机器学习模型相比,白盒模型可以实现更高的预测精度,并准确地评估和解释预测结果。基于极限梯度升压(XGBoost)和贝叶斯优化技术,对曝气设施的空腔水深和空腔长度进行了预测。然后利用Shapley加性解释(SHAP)方法来解释预测结果。本研究展示了SHAP如何根据输入特征的重要性对所有特征和特征交互项进行排序。XGBoost–SHAP白盒模型可以在全局和局部合理地解释XGBoost的预测结果,并且可以实现与黑盒模型相当的预测精度。本研究开发的空腔水深和空腔长度白盒模型在曝气设施形状优化和模型实验改进方面具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An interpretable machine learning model for predicting cavity water depth and cavity length based on XGBoost–SHAP
In contrast to the traditional black box machine learning model, the white box model can achieve higher prediction accuracy and accurately evaluate and explain the prediction results. Cavity water depth and cavity length of aeration facilities are predicted in this research based on Extreme Gradient Boosting (XGBoost) and a Bayesian optimization technique. The Shapley Additive Explanation (SHAP) method is then utilized to explain the prediction results. This study demonstrates how SHAP may order all features and feature interaction terms in accordance with the significance of the input features. The XGBoost–SHAP white box model can reasonably explain the prediction results of XGBoost both globally and locally and can achieve prediction accuracy comparable to the black box model. The cavity water depth and cavity length white box model developed in this study have a promising future application in the shape optimization of aeration facilities and the improvement of model experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1