基于任意局部粘弹性与摩擦耗散效应的具有局部分布混合阻尼的半线性波动方程的一致衰减估计

IF 3.2 1区 数学 Q1 MATHEMATICS Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI:10.1515/anona-2022-0285
Kun‐Peng Jin, Li Wang
{"title":"基于任意局部粘弹性与摩擦耗散效应的具有局部分布混合阻尼的半线性波动方程的一致衰减估计","authors":"Kun‐Peng Jin, Li Wang","doi":"10.1515/anona-2022-0285","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with the stabilization of the wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic and frictional effects. Here, one of the novelties is: the viscoelastic and frictional damping together effect only in a part of domain, not in entire domain, which is only assumed to meet the piecewise multiplier geometric condition that their summed interior and boundary measures can be arbitrarily small. Furthermore, there is no other additional restriction for the location of the viscoelastic-effect region. That is, it is dropped that the viscoelastic-effect region includes a part of the system boundary, which is the fundamental condition in almost all previous literature even if when two types of damping together cover the entire system domain. The other distinct novelty is: in this article we remove the fundamental condition that the derivative of the relaxation function is controlled by relaxation function itself, which is a necessity in the previous literature to obtain the optimal uniform decay rate. Under such weak conditions, we successfully establish a series of decay theorems, which generalize and extend essentially the previous related stability results for viscoelastic model regardless of local damping case, entire damping case and mixed-type damping case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects\",\"authors\":\"Kun‐Peng Jin, Li Wang\",\"doi\":\"10.1515/anona-2022-0285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We are concerned with the stabilization of the wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic and frictional effects. Here, one of the novelties is: the viscoelastic and frictional damping together effect only in a part of domain, not in entire domain, which is only assumed to meet the piecewise multiplier geometric condition that their summed interior and boundary measures can be arbitrarily small. Furthermore, there is no other additional restriction for the location of the viscoelastic-effect region. That is, it is dropped that the viscoelastic-effect region includes a part of the system boundary, which is the fundamental condition in almost all previous literature even if when two types of damping together cover the entire system domain. The other distinct novelty is: in this article we remove the fundamental condition that the derivative of the relaxation function is controlled by relaxation function itself, which is a necessity in the previous literature to obtain the optimal uniform decay rate. Under such weak conditions, we successfully establish a series of decay theorems, which generalize and extend essentially the previous related stability results for viscoelastic model regardless of local damping case, entire damping case and mixed-type damping case.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0285\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0285","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了具有局部分布混合型阻尼的波动方程在任意局部粘弹性和摩擦作用下的镇定问题。这里的一个新颖之处在于:粘弹性和摩擦阻尼共同作用仅在局部区域,而不是整个区域,这只是假设满足分段乘子几何条件,即它们的内部和边界测度之和可以任意小。此外,粘弹性效应区域的位置没有其他附加限制。即忽略了粘弹性效应区域包含系统边界的一部分,这是以往几乎所有文献的基本条件,即使两种阻尼共同覆盖了整个系统域。另一个明显的新颖之处在于:在本文中,我们去掉了松弛函数的导数由松弛函数本身控制的基本条件,而这在以前的文献中是获得最优均匀衰减率的必要条件。在这种弱条件下,我们成功地建立了一系列衰减定理,这些定理在本质上推广和推广了粘弹性模型在局部阻尼情况、整体阻尼情况和混合阻尼情况下的稳定性相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects
Abstract We are concerned with the stabilization of the wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic and frictional effects. Here, one of the novelties is: the viscoelastic and frictional damping together effect only in a part of domain, not in entire domain, which is only assumed to meet the piecewise multiplier geometric condition that their summed interior and boundary measures can be arbitrarily small. Furthermore, there is no other additional restriction for the location of the viscoelastic-effect region. That is, it is dropped that the viscoelastic-effect region includes a part of the system boundary, which is the fundamental condition in almost all previous literature even if when two types of damping together cover the entire system domain. The other distinct novelty is: in this article we remove the fundamental condition that the derivative of the relaxation function is controlled by relaxation function itself, which is a necessity in the previous literature to obtain the optimal uniform decay rate. Under such weak conditions, we successfully establish a series of decay theorems, which generalize and extend essentially the previous related stability results for viscoelastic model regardless of local damping case, entire damping case and mixed-type damping case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
期刊最新文献
Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term Gradient estimates for nonlinear elliptic equations involving the Witten Laplacian on smooth metric measure spaces and implications Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation Existence and multiplicity of solutions for a quasilinear system with locally superlinear condition Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1