Saba Sadat Faghih Imani, Kazim Fouladi-Ghaleh, Hossein Aghababa
{"title":"基于深度度量学习的可泛化高效跨领域人员再识别模型","authors":"Saba Sadat Faghih Imani, Kazim Fouladi-Ghaleh, Hossein Aghababa","doi":"10.1049/cvi2.12214","DOIUrl":null,"url":null,"abstract":"<p>Most of the successful person re-ID models conduct supervised training and need a large number of training data. These models fail to generalise well on unseen unlabelled testing sets. The authors aim to learn a generalisable person re-identification model. The model uses one labelled source dataset and one unlabelled target dataset during training and generalises well on the target testing set. To this end, after a feature extraction by the ResNext-50 network, the authors optimise the model by three loss functions. (a) One loss function is designed to learn the features of the target domain by tuning the distances between target images. Therefore, the trained model will be more robust to overcome the intra-domain variations in the target domain and generalises well on the target testing set. (b) One triplet loss is used which considers both source and target domains and makes the model learn the inter-domain variations between source and target domain as well as the variations in the target domain. (c) Also, one loss function is for supervised learning on the labelled source domain. Extensive experiments on Market1501 and DukeMTMC re-ID show that the model achieves a very competitive performance compared with state-of-the-art models and also it requires an acceptable amount of GPU RAM compared to other successful models.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"17 8","pages":"993-1004"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12214","citationCount":"0","resultStr":"{\"title\":\"Generalizable and efficient cross-domain person re-identification model using deep metric learning\",\"authors\":\"Saba Sadat Faghih Imani, Kazim Fouladi-Ghaleh, Hossein Aghababa\",\"doi\":\"10.1049/cvi2.12214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most of the successful person re-ID models conduct supervised training and need a large number of training data. These models fail to generalise well on unseen unlabelled testing sets. The authors aim to learn a generalisable person re-identification model. The model uses one labelled source dataset and one unlabelled target dataset during training and generalises well on the target testing set. To this end, after a feature extraction by the ResNext-50 network, the authors optimise the model by three loss functions. (a) One loss function is designed to learn the features of the target domain by tuning the distances between target images. Therefore, the trained model will be more robust to overcome the intra-domain variations in the target domain and generalises well on the target testing set. (b) One triplet loss is used which considers both source and target domains and makes the model learn the inter-domain variations between source and target domain as well as the variations in the target domain. (c) Also, one loss function is for supervised learning on the labelled source domain. Extensive experiments on Market1501 and DukeMTMC re-ID show that the model achieves a very competitive performance compared with state-of-the-art models and also it requires an acceptable amount of GPU RAM compared to other successful models.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"17 8\",\"pages\":\"993-1004\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12214\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12214\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12214","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Generalizable and efficient cross-domain person re-identification model using deep metric learning
Most of the successful person re-ID models conduct supervised training and need a large number of training data. These models fail to generalise well on unseen unlabelled testing sets. The authors aim to learn a generalisable person re-identification model. The model uses one labelled source dataset and one unlabelled target dataset during training and generalises well on the target testing set. To this end, after a feature extraction by the ResNext-50 network, the authors optimise the model by three loss functions. (a) One loss function is designed to learn the features of the target domain by tuning the distances between target images. Therefore, the trained model will be more robust to overcome the intra-domain variations in the target domain and generalises well on the target testing set. (b) One triplet loss is used which considers both source and target domains and makes the model learn the inter-domain variations between source and target domain as well as the variations in the target domain. (c) Also, one loss function is for supervised learning on the labelled source domain. Extensive experiments on Market1501 and DukeMTMC re-ID show that the model achieves a very competitive performance compared with state-of-the-art models and also it requires an acceptable amount of GPU RAM compared to other successful models.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf