{"title":"用于线性化Chireix缺相功率放大器的纯相位多电平LINC架构","authors":"Stefan Mueller, R. Negra","doi":"10.1109/LMWC.2022.3173740","DOIUrl":null,"url":null,"abstract":"This letter presents a distinct approach to linearize Chireix outphasing power amplifiers (PAs), which is leveraging the multilevel linear-amplification-with-nonlinear-components (LINC) concept. The proposed architecture operates only on phase-modulated signals and is therefore compatible with digital-like signal generation and distribution. The analysis of the architecture and a calibration algorithm are presented. The validity of the proposed concept is verified by the implementation of a prototype operating at 3.5 GHz, providing 42 dBm of peak output power. The prototype achieves −40.8 and −39.4 dB adjacent channel leakage ratio (ACLR) and 1.73% and 1.94% error vector magnitude (EVM) for a 64- quadrature amplitude modulation (QAM) modulated signal with 6.5 dB PAPR at 10 and 20 MHz bandwidth (BW), respectively. For an orthogonal frequency-division multiplexing (OFDM) modulated signal with 8.3 dB PAPR at 10 MHz BW, the ACLR and EVM are −40.2 dB and 2.64%, respectively.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1255-1258"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-Only Multilevel LINC Architecture for Linearizing Chireix Outphasing Power Amplifiers\",\"authors\":\"Stefan Mueller, R. Negra\",\"doi\":\"10.1109/LMWC.2022.3173740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a distinct approach to linearize Chireix outphasing power amplifiers (PAs), which is leveraging the multilevel linear-amplification-with-nonlinear-components (LINC) concept. The proposed architecture operates only on phase-modulated signals and is therefore compatible with digital-like signal generation and distribution. The analysis of the architecture and a calibration algorithm are presented. The validity of the proposed concept is verified by the implementation of a prototype operating at 3.5 GHz, providing 42 dBm of peak output power. The prototype achieves −40.8 and −39.4 dB adjacent channel leakage ratio (ACLR) and 1.73% and 1.94% error vector magnitude (EVM) for a 64- quadrature amplitude modulation (QAM) modulated signal with 6.5 dB PAPR at 10 and 20 MHz bandwidth (BW), respectively. For an orthogonal frequency-division multiplexing (OFDM) modulated signal with 8.3 dB PAPR at 10 MHz BW, the ACLR and EVM are −40.2 dB and 2.64%, respectively.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1255-1258\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3173740\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3173740","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
这封信提出了一种使Chireix异相功率放大器(PA)线性化的独特方法,该方法利用了具有非线性分量的多级线性放大(LINC)概念。所提出的架构仅对相位调制信号进行操作,因此与类数字信号的生成和分布兼容。对该系统的结构进行了分析,并给出了标定算法。通过在3.5GHz下运行的原型的实现验证了所提出概念的有效性,该原型提供了42dBm的峰值输出功率。对于在10和20 MHz带宽(BW)下具有6.5 dB PAPR的64正交幅度调制(QAM)调制信号,原型分别实现了−40.8和−39.4 dB的相邻信道泄漏率(ACLR)以及1.73%和1.94%的误差矢量幅度(EVM)。对于在10MHz BW下具有8.3dB PAPR的正交频分复用(OFDM)调制信号,ACLR和EVM分别为-40.2dB和2.64%。
Phase-Only Multilevel LINC Architecture for Linearizing Chireix Outphasing Power Amplifiers
This letter presents a distinct approach to linearize Chireix outphasing power amplifiers (PAs), which is leveraging the multilevel linear-amplification-with-nonlinear-components (LINC) concept. The proposed architecture operates only on phase-modulated signals and is therefore compatible with digital-like signal generation and distribution. The analysis of the architecture and a calibration algorithm are presented. The validity of the proposed concept is verified by the implementation of a prototype operating at 3.5 GHz, providing 42 dBm of peak output power. The prototype achieves −40.8 and −39.4 dB adjacent channel leakage ratio (ACLR) and 1.73% and 1.94% error vector magnitude (EVM) for a 64- quadrature amplitude modulation (QAM) modulated signal with 6.5 dB PAPR at 10 and 20 MHz bandwidth (BW), respectively. For an orthogonal frequency-division multiplexing (OFDM) modulated signal with 8.3 dB PAPR at 10 MHz BW, the ACLR and EVM are −40.2 dB and 2.64%, respectively.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.