Peiqiang Liu, Qifeng Liang, Zhiyong An, Jingyi Fu, Yanyan Mao
{"title":"基于集成语义感知网络和重检测的鲁棒目标跟踪","authors":"Peiqiang Liu, Qifeng Liang, Zhiyong An, Jingyi Fu, Yanyan Mao","doi":"10.1049/cvi2.12219","DOIUrl":null,"url":null,"abstract":"<p>Most Siamese-based trackers use classification and regression to determine the target bounding box, which can be formulated as a linear matching process of the template and search region. However, this only takes into account the similarity of features while ignoring the semantic object information, resulting in some cases in which the regression box with the highest classification score is not accurate. To address the lack of semantic information, an object tracking approach based on an ensemble semantic-aware network and redetection (ESART) is proposed. Furthermore, a DarkNet53 network with transfer learning is used as our semantic-aware model to adapt the detection task for extracting semantic information. In addition, a semantic tag redetection method to re-evaluate the bounding box and overcome inaccurate scaling issues is proposed. Extensive experiments based on OTB2015, UAV123, UAV20L, and GOT-10k show that our tracker is superior to other state-of-the-art trackers. It is noteworthy that our semantic-aware ensemble method can be embedded into any tracker for classification and regression task.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 1","pages":"46-59"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12219","citationCount":"0","resultStr":"{\"title\":\"Robust object tracking via ensembling semantic-aware network and redetection\",\"authors\":\"Peiqiang Liu, Qifeng Liang, Zhiyong An, Jingyi Fu, Yanyan Mao\",\"doi\":\"10.1049/cvi2.12219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most Siamese-based trackers use classification and regression to determine the target bounding box, which can be formulated as a linear matching process of the template and search region. However, this only takes into account the similarity of features while ignoring the semantic object information, resulting in some cases in which the regression box with the highest classification score is not accurate. To address the lack of semantic information, an object tracking approach based on an ensemble semantic-aware network and redetection (ESART) is proposed. Furthermore, a DarkNet53 network with transfer learning is used as our semantic-aware model to adapt the detection task for extracting semantic information. In addition, a semantic tag redetection method to re-evaluate the bounding box and overcome inaccurate scaling issues is proposed. Extensive experiments based on OTB2015, UAV123, UAV20L, and GOT-10k show that our tracker is superior to other state-of-the-art trackers. It is noteworthy that our semantic-aware ensemble method can be embedded into any tracker for classification and regression task.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 1\",\"pages\":\"46-59\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12219\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12219\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12219","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Robust object tracking via ensembling semantic-aware network and redetection
Most Siamese-based trackers use classification and regression to determine the target bounding box, which can be formulated as a linear matching process of the template and search region. However, this only takes into account the similarity of features while ignoring the semantic object information, resulting in some cases in which the regression box with the highest classification score is not accurate. To address the lack of semantic information, an object tracking approach based on an ensemble semantic-aware network and redetection (ESART) is proposed. Furthermore, a DarkNet53 network with transfer learning is used as our semantic-aware model to adapt the detection task for extracting semantic information. In addition, a semantic tag redetection method to re-evaluate the bounding box and overcome inaccurate scaling issues is proposed. Extensive experiments based on OTB2015, UAV123, UAV20L, and GOT-10k show that our tracker is superior to other state-of-the-art trackers. It is noteworthy that our semantic-aware ensemble method can be embedded into any tracker for classification and regression task.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf