带阻尼挡板的储罐中粘性液体内部流动的结构

V. Kovalev, Wei Chenyu
{"title":"带阻尼挡板的储罐中粘性液体内部流动的结构","authors":"V. Kovalev, Wei Chenyu","doi":"10.20535/2521-1943.2022.6.3.266603","DOIUrl":null,"url":null,"abstract":"Modern moving objects containing large volumes of liquid need to ensure stability on the movement trajectory, reliability of control during maneuvers, as well as the ability to predict and prevent extreme movement conditions. The presented article provides review materials devoted to the research results into inertial flows of viscous incompressible fluid in tanks with internal damping baffles. In order to exert force on resonant excitations from the liquid side and to compensate for the instabilities of moving objects, the analysis and design of rational structures of influence means on currents is carried out.\nAmong the most effective means of damping should be noted rigid internal baffles of various designs installed in tanks in the most likely areas where instabilities and sources of excitation of resonant fluid movements may occur. Flat rigid partitions, profiled permeable damping surfaces, perforated and retaining elements, enslavers of liquid due to surface tension forces, etc., require comprehensive and detailed study and analysis.","PeriodicalId":32423,"journal":{"name":"Mechanics and Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structure of viscous liquid internal flows in tanks with damping baffles\",\"authors\":\"V. Kovalev, Wei Chenyu\",\"doi\":\"10.20535/2521-1943.2022.6.3.266603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern moving objects containing large volumes of liquid need to ensure stability on the movement trajectory, reliability of control during maneuvers, as well as the ability to predict and prevent extreme movement conditions. The presented article provides review materials devoted to the research results into inertial flows of viscous incompressible fluid in tanks with internal damping baffles. In order to exert force on resonant excitations from the liquid side and to compensate for the instabilities of moving objects, the analysis and design of rational structures of influence means on currents is carried out.\\nAmong the most effective means of damping should be noted rigid internal baffles of various designs installed in tanks in the most likely areas where instabilities and sources of excitation of resonant fluid movements may occur. Flat rigid partitions, profiled permeable damping surfaces, perforated and retaining elements, enslavers of liquid due to surface tension forces, etc., require comprehensive and detailed study and analysis.\",\"PeriodicalId\":32423,\"journal\":{\"name\":\"Mechanics and Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics and Advanced Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2521-1943.2022.6.3.266603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2521-1943.2022.6.3.266603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

含有大量液体的现代运动物体需要确保运动轨迹的稳定性、操纵过程中的控制可靠性,以及预测和防止极端运动条件的能力。本文提供了关于粘性不可压缩流体在具有内部阻尼挡板的储罐中惯性流动的研究结果的综述材料。为了对液体侧的共振激励施加力,并补偿运动物体的不稳定性,对电流影响装置的合理结构进行了分析和设计。在最有效的阻尼方法中,应注意安装在储罐中的各种设计的刚性内部挡板,这些挡板最有可能发生共振流体运动的不稳定性和激励源。平面刚性隔板、异形可渗透阻尼表面、穿孔和保持元件、表面张力导致的液体奴役物等,都需要进行全面详细的研究和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The structure of viscous liquid internal flows in tanks with damping baffles
Modern moving objects containing large volumes of liquid need to ensure stability on the movement trajectory, reliability of control during maneuvers, as well as the ability to predict and prevent extreme movement conditions. The presented article provides review materials devoted to the research results into inertial flows of viscous incompressible fluid in tanks with internal damping baffles. In order to exert force on resonant excitations from the liquid side and to compensate for the instabilities of moving objects, the analysis and design of rational structures of influence means on currents is carried out. Among the most effective means of damping should be noted rigid internal baffles of various designs installed in tanks in the most likely areas where instabilities and sources of excitation of resonant fluid movements may occur. Flat rigid partitions, profiled permeable damping surfaces, perforated and retaining elements, enslavers of liquid due to surface tension forces, etc., require comprehensive and detailed study and analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Аналіз впливу параметрів валкової розливки-прокатки на дефекти сталевої смуги Adaptation of corporate model of ukrainian aircraft product life cycle to the international methodology of systems engineering The potential of using 3D printing in the manufacture of mini hydraulic systems The evolution of the compaction process and the deformed state of porous blanks during their hot forging in the open die Review of methods of degassing of working fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1